Convolution with the linear canonical Hankel transformation

被引:8
|
作者
Kumar, Tanuj [1 ]
Prasad, Akhilesh [1 ]
机构
[1] Indian Sch Mines, Indian Inst Technol, Dept Appl Math, Dhanbad 826004, Bihar, India
来源
关键词
Convolution; Linear canonical transformation; Linear time-invariant filter; Wavelets; Fredholm integral equation;
D O I
10.1007/s40590-017-0187-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we introduce translation and convolution for linear canonical Hankel transformations and studied some inequalities. For the particular values of linear canonical Hankel transformation (i.e., for Hankel-Clifford transformation), we investigate linear time-invariant filters. Furthermore, some applications of linear canonical Hankel transformation to a generalized non-linear parabolic equation and a canonical convolution integral equation are given.
引用
下载
收藏
页码:195 / 213
页数:19
相关论文
共 50 条
  • [21] A Convolution and Product Theorem for the Linear Canonical Transform
    Wei, Deyun
    Ran, Qiwen
    Li, Yuanmin
    Ma, Jing
    Tan, Liying
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (10) : 853 - 856
  • [22] Convolution theorems for the linear canonical transform and their applications
    Deng Bing
    Tao Ran
    Wang Yue
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2006, 49 (05): : 592 - 603
  • [23] Canonical Hankel Wavelet Transformation and Calderon's Reproducing Formula
    Prasad, Akhilesh
    Kumar, Tanuj
    FILOMAT, 2018, 32 (08) : 2735 - 2743
  • [24] STRUCTURE OF LINEAR CANONICAL TRANSFORMATION
    SHAPOVALOV, AV
    SHAPOVALOV, VN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1976, (04): : 132 - 134
  • [25] Linear canonical deformed Hankel transform and the associated uncertainty principles
    Mejjaoli, Hatem
    Negzaoui, Selma
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (02)
  • [26] Composition of linear canonical Hankel pseudo-differential operators
    Singh, Ujjawala
    Kumar, Tanuj
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (08)
  • [27] Linear canonical deformed Hankel transform and the associated uncertainty principles
    Hatem Mejjaoli
    Selma Negzaoui
    Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [28] A GENERALIZED HANKEL CONVOLUTION
    PINTO, JD
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (06) : 1335 - 1346
  • [29] A new convolution operator for the linear canonical transform with applications
    Castro, Luis P.
    Goel, Navdeep
    Silva, Anabela S.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (03):
  • [30] A new convolution theorem associated with the linear canonical transform
    Haiye Huo
    Signal, Image and Video Processing, 2019, 13 : 127 - 133