Terrain Mapping Camera: A stereoscopic high-resolution instrument on Chandrayaan-1

被引:0
|
作者
Kumar, A. S. Kiran [1 ]
Chowdhury, A. Roy [1 ]
Banerjee, A. [1 ]
Dave, A. B. [1 ]
Sharma, B. N. [1 ]
Shah, K. J. [1 ]
Murali, K. R. [1 ]
Joshi, S. R. [1 ]
Sarkar, S. S. [1 ]
Patel, V. D. [1 ]
机构
[1] Ctr Space Applicat, Ahmadabad 380015, Gujarat, India
来源
CURRENT SCIENCE | 2009年 / 96卷 / 04期
关键词
Active pixel sensor; digital elevation map; Moon; stereoscopic view; LUNAR CRUST;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chandrayaan-1, India's first lunar mission, has the prime objective of simultaneous chemical, mineralogical and photo-selenological mapping of the lunar surface. In keeping with the mission objectives, Chandrayaan-1 carries the Terrain Mapping Camera (TMC) designed to map the entire lunar surface during the planned two-year mission. TMC data will enable preparation of a three-dimensional lunar atlas with 5 m sampled spatial and altitude data of 12 bit digitization. The TMC will image in the panchromatic spectral band of 0.5-0.75 mu m with a stereo view in the fore, nadir and aft directions of the spacecraft movement and have a base to height ratio of one.
引用
收藏
页码:492 / 495
页数:4
相关论文
共 50 条
  • [31] The Instrument Design of Lightweight and Large Field of View High-Resolution Hyperspectral Camera
    Fan, Xinghao
    Liu, Chunyu
    Liu, Shuai
    Xie, Yunqiang
    Zheng, Liangliang
    Wang, Tiancong
    Feng, Qinping
    SENSORS, 2021, 21 (07)
  • [32] A high-resolution panoramic camera
    Hua, H
    Ahuja, N
    2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2001, : 960 - 967
  • [33] Thermal Vacuum test of space equipment. Tests of SIR-2 instrument Chandrayaan-1 mission
    Sitek, P.
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2008, 2008, 7124
  • [34] Addressing potential drought resiliency through high-resolution terrain and depression mapping
    Oberski, Tomasz
    Mroz, Marek
    Ogilvie, Jae
    Arp, John Paul
    Arp, Paul A.
    AGRICULTURAL WATER MANAGEMENT, 2021, 254
  • [35] Lithological mapping of central part of Mare Moscoviense using Chandrayaan-1 Hyperspectral Imager (HySI) data
    Bhattacharya, Satadru
    Chauhan, Prakash
    Rajawat, A. S.
    Ajai
    Kumar, A. S. Kiran
    ICARUS, 2011, 212 (02) : 470 - 479
  • [36] Development of an Embedded CPU-Based Instrument Control Unit for the SIR-2 Instrument Onboard the Chandrayaan-1 Mission to the Moon
    Torheim, Olav
    Bronstad, Kjell
    Heerlein, Klaus
    Mall, Urs
    Nathues, Andreas
    Nowosielski, Witold
    Orleanski, Piotr
    Pommeresche, Bjorn
    Reimundo, Viviana
    Skogseide, Yngve
    Solberg, Arne
    Ullaland, Kjetil
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (08): : 2836 - 2846
  • [37] Characterisation of swept-charge devices for the Chandrayaan-1 X-ray Spectrometer (C1XS) instrument
    Gow, J.
    Smith, D. R.
    Holland, A. D.
    Maddison, B.
    Howe, C.
    Sreekumar, P.
    Huovelin, J.
    Grande, M.
    UV, X-RAY, AND GAMMA-RAY SPACE INSTRUMENTATION FOR ASTRONOMY XV, 2007, 6686
  • [38] Planned radiometrically calibrated and geometrically corrected products of lunar high-resolution Terrain Camera on SELENE
    Haruyama, J.
    Ohtake, M.
    Matsunaga, T.
    Morota, T.
    Yokota, Y.
    Honda, C.
    Hirata, N.
    Demura, H.
    Iwasaki, A.
    Nakamura, R.
    Kodama, S.
    ADVANCES IN SPACE RESEARCH, 2008, 42 (02) : 310 - 316
  • [39] High-resolution Ecosystem Mapping in Repetitive Environments Using Dual Camera SLAM
    Hopkinson, Brian M.
    Bhandarkar, Suchendra M.
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4125 - 4131
  • [40] THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars
    Cushing, G. E.
    Titus, T. N.
    Soderblom, L. A.
    Kirk, R. L.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2009, 114