Direct growth of FePO4/graphene and LiFePO4/graphene hybrids for high rate Li-ion batteries

被引:37
|
作者
Fan, Qi [1 ]
Lei, Lixu [1 ]
Xu, Xingyu [2 ,3 ]
Yin, Gui [4 ]
Sun, Yueming [1 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China
[3] Southeast Univ, Dept Elect Engn, MEMS Key Lab, Educ Minist, Nanjing 210096, Jiangsu, Peoples R China
[4] Nanjing Univ, Huaan High Tech Res Inst, Huaian 223003, Peoples R China
关键词
Iron phosphate; Lithium iron phosphate; Direct growth; Graphene; Cathode; Li-ion battery; HIGH-RATE CATHODE; CARBON NANOTUBES; HIGH-CAPACITY; LITHIUM; GRAPHENE; PERFORMANCE; SULFUR; MATRIX;
D O I
10.1016/j.jpowsour.2014.01.044
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
FePO4/graphene and LiFePO4/graphene hybrids have been synthesized by an eco-friendly RAAP-directed growth method. With this strategy, FePO4 and LiFePO4 particles have been grown on the exfoliated graphene-assembled scaffolds. Both of the hybrids present superior electrochemical properties, i.e., high rate capability combined with good capacity retention upon cycling, indicating the great potential as the cathode materials for Li-ion batteries. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 69
页数:5
相关论文
共 50 条
  • [31] 3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries
    Yang, Jinli
    Wang, Jiajun
    Wang, Dongniu
    Li, Xifei
    Geng, Dongsheng
    Liang, Guoxian
    Gauthier, Michel
    Li, Ruying
    Sun, Xueliang
    JOURNAL OF POWER SOURCES, 2012, 208 : 340 - 344
  • [32] Understanding Rate-Limiting Mechanisms in LiFePO4 Cathodes for Li-Ion Batteries
    Thorat, Indrajeet V.
    Joshi, Tapesh
    Zaghib, Karim
    Harb, John N.
    Wheeler, Dean R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (11) : A1185 - A1193
  • [33] LiFePO4: From molten ingot to nanoparticles with high-rate performance in Li-ion batteries
    Zaghib, K.
    Charest, P.
    Dontigny, M.
    Guerfi, A.
    Lagace, M.
    Mauger, A.
    Kopec, M.
    Julien, C. M.
    JOURNAL OF POWER SOURCES, 2010, 195 (24) : 8280 - 8288
  • [34] Enabling stable and high-rate of an olivine-type cathode LiFePO4 for Li-ion batteries by using graphene nanoribbons as conductive agent
    Nguyen, Thien Trung
    Nguyen, Nhu Quynh
    Thai, Duong
    Tieu, Tu Doanh
    Tran, Van Man
    Le, My Loan Phung
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2023, 14 (01)
  • [35] On the preparation of multifunctional conversion coatings of FePO4/ LiFePO4
    Valverde-Perez, S.
    Figueroa, R.
    Novoa, X. R.
    Ramirez-Rico, D. S.
    Vivier, V.
    SURFACE & COATINGS TECHNOLOGY, 2024, 479
  • [36] On the preparation of multifunctional conversion coatings of FePO4/LiFePO4
    Valverde-Pérez, S.
    Figueroa, R.
    Nóvoa, X.R.
    Ramírez-Rico, D.S.
    Vivier, V.
    Surface and Coatings Technology, 2024, 479
  • [37] Effect of reaction time on the FePO4 synthesized for the LiFePO4/C cathode material of lithium ion batteries
    Ma, Xiaoling
    Zhao, Yejun
    Zhang, Youxiang
    PROCEEDINGS OF THE 2015 4TH INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS, CONTROL AND ELECTRONIC ENGINEERING (ICCMCEE 2015), 2015, 37 : 717 - 720
  • [38] Origin of valence and core excitations in LiFePO4 and FePO4
    Kinyanjui, M. K.
    Axmann, P.
    Wohlfahrt-Mehrens, M.
    Moreau, P.
    Boucher, F.
    Kaiser, U.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (27)
  • [39] Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4
    Kumar, Jai
    Shen, Xing
    Li, Bo
    Liu, Huizhou
    Zhao, Junmei
    WASTE MANAGEMENT, 2020, 113 (113) : 32 - 40
  • [40] Preparation and characterization of LiFePO4/Ag composite for Li-ion batteries
    Chen, YK
    Okada, S
    Yamaki, J
    COMPOSITE INTERFACES, 2004, 11 (03) : 277 - 283