Physicochemical Properties of Gd2O3-ZrO2-HfO2 Ceramics as Promising Thermal Barrier Coatings

被引:3
|
作者
Doronin, O. N. [1 ]
Artemenko, N. I. [1 ]
Stekhov, P. A. [1 ]
Marakhovskii, P. S. [1 ]
Stolyarova, V. L. [2 ]
Vorozhtsov, V. A. [2 ]
机构
[1] VIAM, Kurchatov Inst, Moscow 105005, Russia
[2] St Petersburg State Univ, St Petersburg 199034, Russia
基金
俄罗斯基础研究基金会;
关键词
thermal barrier coating; gadolinium oxide; zirconium oxide; hafnium oxide; TRANSFORMATION;
D O I
10.1134/S0036023622050060
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In continuation of work on potentials for the design of high-performance thermal barrier coatings based on three-component ceramic materials containing rare-earth oxides, here we discuss the results of our study of the effects of components on the thermophysical properties of Gd2O3-ZrO2-HfO2 ceramics. Gadolinium oxide and hafnium oxide stabilize the thermal coefficient of linear expansion (TCLE) of ceramic samples in the three-component system Gd2O3-ZrO2-HfO2. Given that the gadolinium oxide and hafnium oxide are in equal amounts (10 to 15 mol %) and zirconia is an amount of at least 70 mol %, the TCLE (alpha(L)) of Gd2O3-ZrO2-HfO2 ceramics ranges from 7.4 x 10(-6) to 10.5 x 10(-6) with acceptable values of thermal conductivity (0.98-1.35 W/(m K)).
引用
收藏
页码:732 / 739
页数:8
相关论文
共 50 条
  • [21] Effect of Gd2O3 Addition on the Microstructure and Properties of Gd2O3-Yb2O3-Y2O3-ZrO2 (GYYZO) Ceramics
    Gao, Pei-Hu
    Zeng, Sheng-Cong
    Jin, Can
    Zhang, Bo
    Chen, Bai-Yang
    Yang, Zhong
    Guo, Yong-Chun
    Liang, Min-Xian
    Li, Jian-Ping
    Li, Quan-Ping
    Lu, Yong-Qing
    Jia, Lu
    Zhao, Dan
    MATERIALS, 2021, 14 (23)
  • [22] Al2O3-ZrO2 composite coatings for thermal-barrier applications
    Ramaswamy, P
    Seetharamu, S
    Varma, KBR
    Rao, KJ
    COMPOSITES SCIENCE AND TECHNOLOGY, 1997, 57 (01) : 81 - 89
  • [23] Toughening effect of Yb2O3 stabilized ZrO2 doped in Gd2Zr2O7 ceramic for thermal barrier coatings
    Zhang, Yu
    Guo, Lei
    Zhao, Xiaoxiang
    Wang, Caimei
    Ye, Fuxing
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 648 : 385 - 391
  • [24] Deposition of Next-Generation Ceramic Thermal Barrier Coatings Based on the Sm2O3–ZrO2–HfO2 System
    P. A. Stekhov
    V. A. Voronov
    O. N. Doronin
    Russian Metallurgy (Metally), 2022, 2022 : 674 - 680
  • [25] Nanocrystalline ceramics based on the ZrO2-HfO2-Y2O3 system
    Panova, TI
    Glushkova, VB
    Lapshin, AV
    Popov, VP
    GLASS PHYSICS AND CHEMISTRY, 2003, 29 (01) : 93 - 98
  • [26] GdAlO 3 /Gd 2 Zr 2 O 7 composites for advanced thermal barrier coatings
    Liu, Xiangyang
    Yu, Yali
    Han, Yi
    Liu, Guanghua
    Sun, Jian
    Liu, Wei
    Zhang, Zijian
    Xu, Na
    Pan, Wei
    Wan, Chunlei
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (15)
  • [27] Synthesis and Physicochemical Properties of Nanopowders and Ceramics in a CeO2-Gd2O3 System
    Simonenko, T. L.
    Kalinina, M., V
    Simonenko, N. P.
    Simonenko, E. P.
    Khamova, T., V
    Shilova, O. A.
    GLASS PHYSICS AND CHEMISTRY, 2018, 44 (04) : 314 - 321
  • [28] Vaporization and thermodynamics of ceramics in the Y2O3-ZrO2-HfO2 system
    Kablov, Eugene N.
    Stolyarova, Valentina L.
    Vorozhtcov, Viktor A.
    Lopatin, Sergey I.
    Karachevtsev, Fedor N.
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2019, 33 (19) : 1537 - 1546
  • [29] Thermal and mechanical properties of sintered bodies and EB-PVD layers of Y2O3 added Gd2Zr2O7 ceramics for thermal barrier coatings
    Lee, Kee Sung
    Jung, Kyu Ick
    Heo, Yong Suk
    Kim, Tae Woo
    Jung, Yeon-Gil
    Paik, Ungyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 507 (02) : 448 - 455
  • [30] Phase stability and thermo-physical properties of ZrO2-CeO2-TiO2 ceramics for thermal barrier coatings
    Wang, Jinshuang
    Sun, Junbin
    Jing, Qiangshan
    Liu, Bing
    Zhang, Hao
    Yu, Yongsheng
    Yuan, Jieyan
    Dong, Shujuan
    Zhou, Xin
    Cao, Xueqiang
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (07) : 2841 - 2850