Numerical solution for various inverse problems

被引:0
|
作者
Weber, R [1 ]
Hureau, J [1 ]
机构
[1] ESEM, Lab Mecan Energet, F-45072 Orleans 2, France
关键词
conformal mapping; airfoil design; profile; Schwarz-Villat; jet; infinite wall;
D O I
10.1016/S0377-0427(99)00187-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study considers the classical two-dimensional model of jet flow using an ideal, incompressible, weightless fluid. Solving a direct problem consists in determining the pressure (or velocity) distribution on an obstacle in a flow. The aim of this paper is to describe and illustrate a numerical method for constructing wetted walls to obtain arbitrary velocity distributions, i.e. solving the inverse problem. This method is applied to airfoil design and to the construction of an infinite wall impinged by a jet. The specified distributions may entail constraints that require an analysis of the existence of the solution. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:577 / 591
页数:15
相关论文
共 50 条
  • [31] Numerical solution of inverse heat conduction problems in two spatial dimensions
    Reinhardt, H.-J.
    Hao, Dinh Nho
    Frohne, J.
    Suttmeier, F.-T.
    Journal of Inverse and Ill-Posed Problems, 2007, 15 (02): : 181 - 198
  • [32] Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations
    Aida-Zade, K. R.
    Kuliev, S. Z.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (05) : 803 - 815
  • [33] Numerical Solution of External Boundary Conditions Inverse Multilayer Diffusion Problems
    Koleva, Miglena N.
    Vulkov, Lubin G.
    SYMMETRY-BASEL, 2024, 16 (10):
  • [34] NUMERICAL-SOLUTION OF CERTAIN INVERSE HEAT-CONDUCTION PROBLEMS
    MAKSIMOV, VI
    AUTOMATION AND REMOTE CONTROL, 1993, 54 (02) : 244 - 251
  • [35] Numerical solution of some direct and inverse mathematical problems for tidal flows
    Agoshkov, V. I.
    Kamenschikov, L. P.
    Karepova, E. D.
    Shaidurov, V. V.
    COMPUTATIONAL SCIENCE AND HIGH PERFORMANCE COMPUTING III, 2008, 101 : 31 - +
  • [36] The numerical solution of forward and inverse Robin problems for Laplace's equation
    Qu, Dan
    Ma, Yan-Bo
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [37] Numerical solution of inverse heat conduction problems in two spatial dimensions
    University of Siegen, Department of Mathematics, Walter-Flex-Str. 3, 57068 Siegen, Germany
    不详
    J Inverse Ill Posed Probl, 2007, 2 (181-189):
  • [38] On the Features of Numerical Solution of Coefficient Inverse Problems for Nonlinear Equations of the Reaction-Diffusion-Advection Type with Data of Various Types
    Lukyanenko, D. V.
    Argun, R. L.
    Borzunov, A. A.
    Gorbachev, A. V.
    Shinkarev, V. D.
    Shishlenin, M. A.
    Yagola, A. G.
    DIFFERENTIAL EQUATIONS, 2023, 59 (12) : 1734 - 1757
  • [39] Green's functions in the numerical solution of some inverse boundary value problems
    Melnikov, YA
    Powell, JO
    BOUNDARY ELEMENTS XX, 1998, 4 : 351 - 360
  • [40] Numerical Solution of Inverse Spectral Problems for Sturm - Liouville Operators with Discontinuous Potentials
    Efremova, L. S.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2014, 14 (03): : 273 - 279