An Unsupervised Methodology for the Detection of Epileptic Seizures Using EEG Signals: A Multi-Dataset Evaluation

被引:0
|
作者
Tsiouris, Kostas M. [1 ,4 ]
Konitsiotis, Spiros [2 ]
Markoula, Sofia [3 ]
Koutsouris, Dimitrios D. [1 ]
Fotiadis, Dimitrios, I [4 ,5 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Biomed Engn Lab, GR-15773 Athens, Greece
[2] Univ Ioannina, Med Sch, Dept Neurol, GR-45110 Ioannina, Greece
[3] Univ Hosp Ioannina, GR-45110 Ioannina, Greece
[4] Univ Ioannina, Dept Mat Sci & Engn, Unit Med Technol & Intelligent Informat Syst, GR-45110 Ioannina, Greece
[5] Univ Ioannina, FORTH, Inst Mol Biol & Biotechnol, Dept Biomed Res, GR-45110 Ioannina, Greece
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Although the electroencephalogram (EEG) is the most commonly used means to monitor epileptic patients, public EEG datasets are very scarce making it difficult to develop and validate seizure detection algorithms. In this work an unsupervised seizure detection methodology is used to isolate ictal EEG segments without requiring any apriori information or human intervention. Seizures are detected using four simple seizure detection conditions that are activated when rhythmical activity from different brain areas is simultaneously concentrated in the alpha (8-13 Hz), theta (4-7 Hz) or delta (1-3 Hz) frequency range. Then, only a small proportion of the EEG segments that are most likely to contain ictal activity is selected and presented to the physician for the final evaluation. In this way, large volumes of EEG signals can be annotated in a fraction of the time and effort that would be otherwise required. Using EEG data from 33 sessions from the Temple University Hospital (TUH) EEG Corpus, our unsupervised methodology reached, on average, 84.92% seizure detection sensitivity with 3.46 false detections per hour of EEG signals.
引用
收藏
页码:3390 / 3393
页数:4
相关论文
共 50 条
  • [1] Detection of Epileptic Seizures using EEG Signals
    Gupta, Sarthak
    Bagga, Siddhant
    Maheshkar, Vikas
    Bhatia, M. P. S.
    [J]. 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [2] Forecasting Epileptic Seizures Using XGBoost Methodology and EEG Signals
    Mounika, Sunkara
    Reeja, S.R.
    [J]. EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [3] Epileptic Disorder Detection of Seizures Using EEG Signals
    Alharthi, Mariam K.
    Moria, Kawthar M.
    Alghazzawi, Daniyal M.
    Tayeb, Haythum O.
    [J]. SENSORS, 2022, 22 (17)
  • [4] Using Recurrent ANNs for the Detection of Epileptic Seizures in EEG Signals
    Rivero, Daniel
    Fernandez-Blanco, Enrique
    Dorado, Julian
    Pazos, Alejandro
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 587 - 592
  • [5] A robust methodology for classification of epileptic seizures in EEG signals
    Tzimourta, Katerina D.
    Tzallas, Alexandros T.
    Giannakeas, Nikolaos
    Astrakas, Loukas G.
    Tsalikakis, Dimitrios G.
    Angelidis, Pantelis
    Tsipouras, Markos G.
    [J]. HEALTH AND TECHNOLOGY, 2019, 9 (02) : 135 - 142
  • [6] A robust methodology for classification of epileptic seizures in EEG signals
    Katerina D. Tzimourta
    Alexandros T. Tzallas
    Nikolaos Giannakeas
    Loukas G. Astrakas
    Dimitrios G. Tsalikakis
    Pantelis Angelidis
    Markos G. Tsipouras
    [J]. Health and Technology, 2019, 9 : 135 - 142
  • [7] Evaluation of Unsupervised Anomaly Detection Techniques in Labelling Epileptic Seizures on Human EEG
    Karpov, Oleg E. E.
    Khoymov, Matvey S. S.
    Maksimenko, Vladimir A. A.
    Grubov, Vadim V. V.
    Utyashev, Nikita
    Andrikov, Denis A. A.
    Kurkin, Semen A. A.
    Hramov, Alexander E. E.
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [8] Detection of focal epileptic seizures on EEG signals using the CSP algorithm
    Giannakakis, G.
    Makantasis, K.
    Giannakaki, K.
    Zervakis, M.
    Vorgia, P.
    [J]. EPILEPSIA, 2022, 63 : 107 - 107
  • [9] Epileptic seizures detection in EEG signals using TQWT and ensemble learning
    Ghassemi, Navid
    Shoeibi, Afshin
    Rouhani, Modjtaba
    Hosseini-Nejad, Hossein
    [J]. 2019 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2019), 2019, : 403 - 408
  • [10] Prognosis of Epileptic seizures using EEG signals
    Sood, Meenakshi
    Bhooshan, Sunil V.
    [J]. 2015 THIRD INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2015, : 12 - 16