Epileptic Disorder Detection of Seizures Using EEG Signals

被引:13
|
作者
Alharthi, Mariam K. [1 ]
Moria, Kawthar M. [1 ]
Alghazzawi, Daniyal M. [2 ]
Tayeb, Haythum O. [3 ]
机构
[1] King Abdulaziz Univ, Coll Comp & Informat Technol, Dept Comp Sci, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Coll Comp & Informat Technol, Dept Informat Syst, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Fac Med, Neurosci Res Unit, Jeddah 21589, Saudi Arabia
关键词
CHB-MIT dataset; deep learning; epilepsy; seizure detection; XLtek EEG; AUTOMATED SEIZURE;
D O I
10.3390/s22176592
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Epilepsy is a nervous system disorder. Encephalography (EEG) is a generally utilized clinical approach for recording electrical activity in the brain. Although there are a number of datasets available, most of them are imbalanced due to the presence of fewer epileptic EEG signals compared with non-epileptic EEG signals. This research aims to study the possibility of integrating local EEG signals from an epilepsy center in King Abdulaziz University hospital into the CHB-MIT dataset by applying a new compatibility framework for data integration. The framework comprises multiple functions, which include dominant channel selection followed by the implementation of a novel algorithm for reading XLtek EEG data. The resulting integrated datasets, which contain selective channels, are tested and evaluated using a deep-learning model of 1D-CNN, Bi-LSTM, and attention. The results achieved up to 96.87% accuracy, 96.98% precision, and 96.85% sensitivity, outperforming the other latest systems that have a larger number of EEG channels.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Detection of Epileptic Seizures using EEG Signals
    Gupta, Sarthak
    Bagga, Siddhant
    Maheshkar, Vikas
    Bhatia, M. P. S.
    [J]. 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [2] Using Recurrent ANNs for the Detection of Epileptic Seizures in EEG Signals
    Rivero, Daniel
    Fernandez-Blanco, Enrique
    Dorado, Julian
    Pazos, Alejandro
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 587 - 592
  • [3] Detection of focal epileptic seizures on EEG signals using the CSP algorithm
    Giannakakis, G.
    Makantasis, K.
    Giannakaki, K.
    Zervakis, M.
    Vorgia, P.
    [J]. EPILEPSIA, 2022, 63 : 107 - 107
  • [4] Epileptic seizures detection in EEG signals using TQWT and ensemble learning
    Ghassemi, Navid
    Shoeibi, Afshin
    Rouhani, Modjtaba
    Hosseini-Nejad, Hossein
    [J]. 2019 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2019), 2019, : 403 - 408
  • [5] Prognosis of Epileptic seizures using EEG signals
    Sood, Meenakshi
    Bhooshan, Sunil V.
    [J]. 2015 THIRD INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2015, : 12 - 16
  • [6] Detection of Epilepsy Seizures and Epileptic Indicators in EEG Signals
    Yuecel, Zeynep
    Oezgueler, A. Buelent
    [J]. 2008 IEEE 16TH SIGNAL PROCESSING, COMMUNICATION AND APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2008, : 898 - 901
  • [7] Detection of Epileptic Seizures by the Analysis of EEG Signals Using Empirical Mode Decomposition
    Yol, Seyma
    Ozdemir, Mehmet Akif
    Akan, Aydin
    Chaparro, Luis F.
    [J]. 2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2018,
  • [8] Novel deep learning framework for detection of epileptic seizures using EEG signals
    Mallick, Sayani
    Baths, Veeky
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2024, 18
  • [9] Effective Detection of Epileptic Seizures through EEG Signals Using Deep Learning Approaches
    Mekruksavanich, Sakorn
    Jitpattanakul, Anuchit
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (04): : 1937 - 1952
  • [10] Epileptic Seizures Detection in EEG Signals Using Fusion Handcrafted and Deep Learning Features
    Malekzadeh, Anis
    Zare, Assef
    Yaghoobi, Mahdi
    Kobravi, Hamid-Reza
    Alizadehsani, Roohallah
    [J]. SENSORS, 2021, 21 (22)