Transactional Prefetching: Narrowing the Window of Contention in Hardware Transactional Memory

被引:0
|
作者
Negi, Anurag [1 ]
Armejach, Adria [2 ,3 ]
Cristal, Adrian [2 ,4 ]
Unsal, Osman S. [2 ]
Stenstrom, Per [1 ]
机构
[1] Chalmers Univ Technol, Gothenburg, Sweden
[2] Barcelona Supercomp Ctr, Barcelona, Spain
[3] Univ Politecn Cataluna, Barcelona, Spain
[4] Spanish Natl Res Council, CSIC, IIIA, Barcelona, Spain
关键词
hardware transactional memory; multicores; prefetching;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Memory access latency is the primary performance bottle-neck in modern computer systems. Prefetching data before it is needed by a processing core allows substantial performance gains by overlapping significant portions of memory latency with useful work. Prior work has investigated this technique and measured potential benefits in a variety of scenarios. However, its use in speeding up Hardware Transactional Memory (HTM) has remained hitherto unexplored. In several HTM designs transactions invalidate speculatively updated cache lines when they abort. Such cache lines tend to have high locality and are likely to be accessed again when the transaction re-executes. Coarse grained transactions that update several cache lines are particularly susceptible to performance degradation even under moderate contention. However, such transactions show strong locality of reference, especially when contention is high. Prefetching cache lines with high locality can, therefore, improve overall concurrency by speeding up transactions and, thereby, narrowing the window of time in which such transactions persist and can cause contention. Such transactions are important since they are likely to form a common TM use-case. We note that traditional prefetch techniques may not be able to track such lines adequately or issue prefetches quickly enough. This paper investigates the use of prefetching in HTMs, proposing a simple design to identify and request prefetch candidates, and measures performance gains to be had for several representative TM workloads.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 50 条
  • [41] Efficient Transaction Nesting in Hardware Transactional Memory
    Liu, Yi
    Su, Yangming
    Zhang, Cui
    Wu, Mingyu
    Zhang, Xin
    Li, He
    Qian, Depei
    ARCHITECTURE OF COMPUTING SYSTEMS - ARCS 2010, PROCEEDINGS, 2010, 5974 : 138 - +
  • [42] Hardware Acceleration of Transactional Memory on Commodity Systems
    Casper, Jared
    Oguntebi, Tayo
    Hong, Sungpack
    Bronson, Nathan G.
    Kozyrakis, Christos
    Olukotun, Kunle
    ACM SIGPLAN NOTICES, 2011, 46 (03) : 27 - 38
  • [43] Consolidated Conflict Detection for Hardware Transactional Memory
    Zhao, Lihang
    Draper, Jeffrey
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT'14), 2014, : 201 - 212
  • [44] Scalable and Reliable Communication for Hardware Transactional Memory
    Pugsley, Seth H.
    Awasthi, Manu
    Madan, Niti
    Muralimanohar, Naveen
    Balasubramonian, Rajeev
    PACT'08: PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, 2008, : 144 - 154
  • [45] Brief Announcement: Hardware Transactional Persistent Memory
    Giles, Ellis
    Doshi, Kshitij
    Varman, Peter
    SPAA'18: PROCEEDINGS OF THE 30TH ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2018, : 227 - 230
  • [46] Hardware Transactional Memory System for Parallel Programming
    Wang Huayong
    Hou Rui
    Wang Kun
    2008 13TH ASIA-PACIFIC COMPUTER SYSTEMS ARCHITECTURE CONFERENCE, 2008, : 21 - 27
  • [47] Supporting transaction nesting in hardware transactional memory
    Liu, Yi
    Wu, Ming-Yu
    Wang, Yong-Hui
    Qian, De-Pei
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (01): : 130 - 136
  • [48] Virtues and Limitations of Commodity Hardware Transactional Memory
    Diegues, Nuno
    Romano, Paolo
    Rodrigues, Luis
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT'14), 2014, : 3 - 14
  • [49] Transactional memory: The hardware-software interface
    McDonald, Austen
    Carlstrom, Brian D.
    Chung, JaeWoong
    Minh, Chi Cao
    Chafi, Hassan
    Kozyrakis, Christos
    Olukotun, Kunle
    IEEE MICRO, 2007, 27 (01) : 67 - 76
  • [50] Migration in Hardware Transactional Memory on Asymmetric Multiprocessor
    Sustran, Zivojin
    Protic, Jelica
    IEEE ACCESS, 2021, 9 (09): : 69346 - 69364