Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect

被引:54
|
作者
Ling, Xiaohui [1 ,2 ,3 ,4 ]
Yi, Xunong [1 ,2 ]
Zhou, Xinxing [3 ]
Liu, Yachao [3 ]
Shu, Weixing [3 ]
Luo, Hailu [1 ,2 ,3 ]
Wen, Shuangchun [3 ]
机构
[1] Shenzhen Univ, SZU NUS Collaborat Innovat Ctr Optoelect Sci & Te, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Coll Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Hunan Univ, Coll Phys & Microelect Sci, Lab Spin Photon, Changsha 410082, Hunan, Peoples R China
[4] Hengyang Normal Univ, Dept Phys & Elect Informat Sci, Hengyang 421002, Peoples R China
基金
中国国家自然科学基金;
关键词
PANCHARATNAM-BERRY PHASE; ORBITAL ANGULAR-MOMENTUM; VECTOR BEAMS; LIGHT; METASURFACES;
D O I
10.1063/1.4898190
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Realization of the Quantum Spin Hall Effect Using Tunable Acoustic Metamaterials
    Chen, Jia-he
    Li, Yanfang
    Yu, Chenfei
    Fu, Caixing
    Hang, Zhi Hong
    PHYSICAL REVIEW APPLIED, 2022, 18 (04)
  • [22] Optical Orientation and Inverse Spin Hall Effect as Effective Tools to Investigate Spin-Dependent Diffusion
    Finazzi, Marco
    Bottegoni, Federico
    Zucchetti, Carlo
    Bollani, Monica
    Ballabio, Andrea
    Frigerio, Jacopo
    Rortais, Fabien
    Vergnaud, Celine
    Marty, Alain
    Jamet, Matthieu
    Isella, Giovanni
    Ciccacci, Franco
    ELECTRONICS, 2016, 5 (04)
  • [23] Ab initio theory of the spin-dependent conductivity tensor and the spin Hall effect in random alloys
    Turek, I
    Kudrnovsky, J.
    Drchal, V
    PHYSICAL REVIEW B, 2019, 100 (13)
  • [24] Enhanced and tunable photonic spin Hall effect with optical Tamm states
    Tang, Jiao
    Zhang, Yuting
    Yuan, Hongxia
    Long, Xin
    Jiang, Jie
    Tian, Haishan
    Jiang, Leyong
    JOURNAL OF APPLIED PHYSICS, 2023, 134 (23)
  • [25] Tunable photonic spin Hall effect due to the chiral Hall effect in strained Weyl semimetals
    Jia, Guangyi
    Zhang, Ruixia
    Huang, Zhenxian
    Ma, Qiaoyun
    Wang, Huaiwen
    Asgari, Reza
    NEW JOURNAL OF PHYSICS, 2021, 23 (07):
  • [26] Spin-dependent Smoluchowski effect
    Polyakov, O. P.
    Corbetta, M.
    Stepanyuk, O. V.
    Oka, H.
    Saletsky, A. M.
    Sander, D.
    Stepanyuk, V. S.
    Kirschner, J.
    PHYSICAL REVIEW B, 2012, 86 (23):
  • [27] Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces
    Ke, Yougang
    Liu, Yachao
    He, Yongli
    Zhou, Junxiao
    Luo, Hailu
    Wen, Shuangchun
    APPLIED PHYSICS LETTERS, 2015, 107 (04)
  • [28] Universal intrinsic spin Hall effect
    Sinova, J
    Culcer, D
    Niu, Q
    Sinitsyn, NA
    Jungwirth, T
    MacDonald, AH
    PHYSICAL REVIEW LETTERS, 2004, 92 (12) : 126603 - 1
  • [29] Intrinsic anomalous spin Hall effect
    Li, Ping
    Zhang, Jing-Zhao
    Guo, Zhi-Xin
    Min, Tai
    Wang, Xiangrong
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (02)
  • [30] Intrinsic anomalous spin Hall effect
    Ping Li
    Jing-Zhao Zhang
    Zhi-Xin Guo
    Tai Min
    Xiangrong Wang
    Science China Physics, Mechanics & Astronomy, 2023, 66