Asymptotic properties of M-estimators in linear and nonlinear multivariate regression models

被引:0
|
作者
Withers, Christopher S. [1 ]
Nadarajah, Saralees [2 ]
机构
[1] Ind Res Ltd, Appl Math Grp, Lower Hutt, New Zealand
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Bias reduction; M-estimators; Nonlinear; Regression; Robustness; Skewness; ROBUST ESTIMATION; EXPANSIONS; QUANTILES;
D O I
10.1007/s00184-013-0458-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the (possibly nonlinear) regression model in with shift parameter in and other parameters in . Residuals are assumed to be from an unknown distribution function (d.f.). Let be a smooth -estimator of and a smooth function. We obtain the asymptotic normality, covariance, bias and skewness of and an estimator of with bias requiring calculations. (In contrast, the jackknife and bootstrap estimators require calculations.) For a linear regression with random covariates of low skewness, if , then has bias (not ) and skewness (not ), and the usual approximate one-sided confidence interval (CI) for has error (not ). These results extend to random covariates.
引用
收藏
页码:647 / 673
页数:27
相关论文
共 50 条