DESTRUCTIBILITY OF THE TREE PROPERTY AT ℵω+1

被引:2
|
作者
Hayut, Yair [1 ]
Magidor, Menachem [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, IL-9190401 Jerusalem, Israel
基金
奥地利科学基金会;
关键词
tree property; successors of singulars; forcing; SUCCESSORS;
D O I
10.1017/jsl.2019.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a model in which the tree property holds in. aleph(omega+1) and it is destructible under Col(omega, omega(1)). On the other hand we discuss some cases in which the tree property is indestructible under small or closed forcings.
引用
收藏
页码:621 / 631
页数:11
相关论文
共 50 条
  • [11] Base Tree Property
    Bohuslav Balcar
    Michal Doucha
    Michael Hrušák
    Order, 2015, 32 : 69 - 81
  • [12] Base Tree Property
    Balcar, Bohuslav
    Doucha, Michal
    Hrusak, Michael
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2015, 32 (01): : 69 - 81
  • [13] A property of Farey tree
    Kocic, L
    Stefanovska, L
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 345 - 351
  • [14] On the antichain tree property
    Ahn, JinHoo
    Kim, Joonhee
    Lee, Junguk
    JOURNAL OF MATHEMATICAL LOGIC, 2023, 23 (02)
  • [15] INDESTRUCTIBILITY OF THE TREE PROPERTY
    Honzik, Radek
    Stejskalova, Sarka
    JOURNAL OF SYMBOLIC LOGIC, 2020, 85 (01) : 467 - 485
  • [16] SOP1, SOP2, and antichain tree property
    Ahn, Jinhoo
    Kim, Joonhee
    ANNALS OF PURE AND APPLIED LOGIC, 2024, 175 (03)
  • [17] Property: A Bundle of Sticks or a Tree?
    di Robilant, Anna
    VANDERBILT LAW REVIEW, 2013, 66 (03) : 869 - 932
  • [18] The special Aronszajn tree property
    Golshani, Mohammad
    Hayut, Yair
    JOURNAL OF MATHEMATICAL LOGIC, 2020, 20 (01)
  • [19] Fragility and indestructibility of the tree property
    Unger, Spencer
    ARCHIVE FOR MATHEMATICAL LOGIC, 2012, 51 (5-6) : 635 - 645
  • [20] THE TREE PROPERTY AT Nω+2
    Friedman, Sy-David
    Halilovic, Ajdin
    JOURNAL OF SYMBOLIC LOGIC, 2011, 76 (02) : 477 - 490