tree property;
successors of singulars;
forcing;
SUCCESSORS;
D O I:
10.1017/jsl.2019.4
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We construct a model in which the tree property holds in. aleph(omega+1) and it is destructible under Col(omega, omega(1)). On the other hand we discuss some cases in which the tree property is indestructible under small or closed forcings.
机构:
Korea Inst Adv Study KIAS, Sch Computat Sci, 85 Hoegiro, Seoul 02455, South KoreaKorea Inst Adv Study KIAS, Sch Computat Sci, 85 Hoegiro, Seoul 02455, South Korea
Ahn, JinHoo
Kim, Joonhee
论文数: 0引用数: 0
h-index: 0
机构:
Yonsei Univ, Dept Math, 50 Yonsei-ro, Seoul 03722, South KoreaKorea Inst Adv Study KIAS, Sch Computat Sci, 85 Hoegiro, Seoul 02455, South Korea
Kim, Joonhee
Lee, Junguk
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci &Technol KAIST, Dept Math Sci, 291 Daehak-ro, Daejeon 34141, South KoreaKorea Inst Adv Study KIAS, Sch Computat Sci, 85 Hoegiro, Seoul 02455, South Korea
机构:
Korea Inst Adv Study, Sch Computat Sci, 85 Hoegiro, Seoul 02455, South KoreaKorea Inst Adv Study, Sch Computat Sci, 85 Hoegiro, Seoul 02455, South Korea
Ahn, Jinhoo
Kim, Joonhee
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Adv Study, Sch Math, 85 Hoegiro, Seoul 02455, South KoreaKorea Inst Adv Study, Sch Computat Sci, 85 Hoegiro, Seoul 02455, South Korea