Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing

被引:359
|
作者
Yang, Yang [1 ]
Chen, Zeyu [2 ,3 ]
Song, Xuan [1 ,4 ]
Zhang, Zhuofeng [1 ]
Zhang, Jun [2 ,5 ]
Shung, K. Kirk [2 ]
Zhou, Qifa [2 ,6 ]
Chen, Yong [1 ]
机构
[1] Univ Southern Calif, Epstein Dept Ind & Syst Engn, Dept Aerosp & Mech Engn, Viterbi Sch Engn, 3715 McClintock Ave, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Dept Biomed Engn, Viterbi Sch Engn, 3650 McClintock Ave, Los Angeles, CA 90089 USA
[3] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[4] Univ Iowa, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
[5] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China
[6] Univ Southern Calif, USC Roski Eye Inst, 1450 San Pablo St, Los Angeles, CA 90033 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DESIGN PRINCIPLES; COMPOSITES; MENISCUS; EXOSKELETON; MECHANICS; EXAMPLE; MICROSTRUCTURE; DEFORMATION; FABRICATION; SCAFFOLDS;
D O I
10.1002/adma.201605750
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomimetic architectures with Bouligand-type carbon nanotubes are fabricated by an electrically assisted 3D-printing method. The enhanced impact resistance is attributed to the energy dissipation by the rotating anisotropic layers. This approach is used to mimic the collagenfiber alignment in the human meniscus to create a reinforced artificial meniscus with circumferentially and radially aligned carbon nanotubes.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Biomimetic Synthesis of Zinc Oxide 3D Architectures with Gelatin as Matrix
    Gan, Yong
    Gu, Fubo
    Han, Dongmei
    Wang, Zhihua
    Guo, Guangsheng
    JOURNAL OF NANOMATERIALS, 2010, 2010
  • [42] All-Aqueous Embedded 3D Printing for Freeform Fabrication of Biomimetic 3D Constructs
    Deng, Xiaokang
    Qi, Cheng
    Meng, Si
    Dong, Haifeng
    Wang, Tianfu
    Liu, Zhou
    Kong, Tiantian
    Advanced Materials, 2024, 36 (50)
  • [43] Investigation of polylactide and carbon nanocomposite filament for 3D printing
    Akshay Potnuru
    Yonas Tadesse
    Progress in Additive Manufacturing, 2019, 4 : 23 - 41
  • [44] 3D printing of a multifunctional nanocomposite helical liquid sensor
    Guo, Shuang-zhuang
    Yang, Xuelu
    Heuzey, Marie-Claude
    Therriault, Daniel
    NANOSCALE, 2015, 7 (15) : 6451 - 6456
  • [45] Cellulose nanocrystals in 3D printing and aerogels: nanocomposite properties
    Advincula, Rigoberto
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [46] Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs
    Zhu, Kai
    Shin, Su Ryon
    van Kempen, Tim
    Li, Yi-Chen
    Ponraj, Vidhya
    Nasajpour, Amir
    Mandla, Serena
    Hu, Ning
    Liu, Xiao
    Leijten, Jeroen
    Lin, Yi-Dong
    Hussain, Mohammad Asif
    Zhang, Yu Shrike
    Tamayol, Ali
    Khademhosseini, Ali
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (12)
  • [47] Investigation of polylactide and carbon nanocomposite filament for 3D printing
    Potnuru, Akshay
    Tadesse, Yonas
    PROGRESS IN ADDITIVE MANUFACTURING, 2019, 4 (01) : 23 - 41
  • [48] Magnetic-assisted 3D printing of strain rate-dependent material with biomimetic embedded intelligence
    Li, Jianyang
    Li, Bingqian
    Ren, Lei
    Liu, Qingping
    Ren, Luquan
    Liu, Changyi
    Wang, Kunyang
    Additive Manufacturing, 2024, 96
  • [49] Barbed-wire reinforcement for 3D concrete printing
    Hojati, Maryam
    Memari, Ali M.
    Zahabi, Mehrzad
    Wu, Zhengyu
    Li, Zhanzhao
    Park, Keunhyoung
    Nazarian, Shadi
    Duarte, Jose P.
    AUTOMATION IN CONSTRUCTION, 2022, 141
  • [50] Barbed-wire reinforcement for 3D concrete printing
    Hojati, Maryam
    Memari, Ali M.
    Zahabi, Mehrzad
    Wu, Zhengyu
    Li, Zhanzhao
    Park, Keunhyoung
    Nazarian, Shadi
    Duarte, Jose P.
    AUTOMATION IN CONSTRUCTION, 2022, 141