An FFT approach for option pricing under a regime-switching stochastic interest rate model

被引:12
|
作者
Fan, Kun [1 ]
Shen, Yang [2 ]
Siu, Tak Kuen [3 ]
Wang, Rongming [1 ]
机构
[1] East China Normal Univ, Sch Stat, Shanghai, Peoples R China
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[3] Macquarie Univ, Fac Business & Econ, Dept Appl Finance & Actuarial Studies, Sydney, NSW, Australia
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金; 中国博士后科学基金;
关键词
Fast Fourier transform; Forward measure; Regime-switching; Stochastic interest rate; TERM-STRUCTURE; VOLATILITY MODEL; BOND OPTIONS; VALUATION; VARIANCE; SWAPS;
D O I
10.1080/03610926.2015.1100740
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we investigate the pricing of European-style options under a Markovian regime-switching Hull-White interest rate model. The parameters of this model, including the mean-reversion level, the volatility of the stochastic interest rate, and the volatility of an asset's value, are modulated by an observable, continuous-time, finite-state Markov chain. A closed-form expression for the characteristic function of the logarithmic terminal asset price is derived. Then, using the fast Fourier transform, a price of a European-style option is computed. In a two-state Markov chain case, numerical examples and empirical studies are presented to illustrate the practical implementation of the model.
引用
收藏
页码:5292 / 5310
页数:19
相关论文
共 50 条
  • [41] PRICING ANNUITY GUARANTEES UNDER A REGIME-SWITCHING MODEL Discussion
    Elliott, Robert
    Siu, Tak
    [J]. NORTH AMERICAN ACTUARIAL JOURNAL, 2009, 13 (03) : 333 - 337
  • [42] A lattice method for option pricing with two underlying assets in the regime-switching model
    Liu, R. H.
    Zhao, J. L.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 250 : 96 - 106
  • [43] An integral equation approach for pricing American put options under regime-switching model
    Zhu, Song-Ping
    Zheng, Yawen
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (07) : 1454 - 1479
  • [44] COS method for option pricing under a regime-switching model with time-changed Levy processes
    Tour, G.
    Thakoor, N.
    Khaliq, A. Q. M.
    Tangman, D. Y.
    [J]. QUANTITATIVE FINANCE, 2018, 18 (04) : 673 - 692
  • [45] Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality
    Ignatieva, Katja
    Song, Andrew
    Ziveyi, Jonathan
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2016, 70 : 286 - 300
  • [46] The threshold of a stochastic SIRS epidemic model with general incidence rate under regime-switching
    Kuang, Daipeng
    Yin, Qian
    Li, Jianli
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (17): : 13624 - 13647
  • [47] LOOKBACK OPTION PRICING FOR REGIME-SWITCHING JUMP DIFFUSION MODELS
    Jin, Zhuo
    Qian, Linyi
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2015, 5 (02) : 237 - 258
  • [48] NEW NUMERICAL SCHEME FOR PRICING AMERICAN OPTION WITH REGIME-SWITCHING
    Khaliq, A. Q. M.
    Liu, R. H.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2009, 12 (03) : 319 - 340
  • [49] Option pricing in regime-switching frameworks with the Extended Girsanov Principle
    Godin, Frederic
    Trottier, Denis-Alexandre
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2021, 99 : 116 - 129
  • [50] Convergence rates of trinomial tree methods for option pricing under regime-switching models
    Ma, Jingtang
    Zhu, Tengfei
    [J]. APPLIED MATHEMATICS LETTERS, 2015, 39 : 13 - 18