Constrained Submodular Minimization for Missing Labels and Class Imbalance in Multi-Label Learning

被引:0
|
作者
Wu, Baoyuan [1 ]
Lyu, Siwei [2 ]
Ghanem, Bernard [1 ]
机构
[1] KAUST, Thuwal, Saudi Arabia
[2] SUNY Albany, Albany, NY 12222 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In multi-label learning, there are two main challenges: missing labels and class imbalance (CIB). The former assumes that only a partial set of labels are provided for each training instance while other labels are missing. CIB is observed from two perspectives: first, the number of negative labels of each instance is much larger than its positive labels; second, the rate of positive instances (i.e. the number of positive instances divided by the total number of instances) of different classes are significantly different. Both missing labels and CIB lead to significant performance degradation. In this work, we propose a new method to handle these two challenges simultaneously. We formulate the problem as a constrained submodular minimization that is composed of a submodular objective function that encourages label consistency and smoothness, as well as, class cardinality bound constraints to handle class imbalance. We further present a convex approximation based on the Lovasz extension of sub-modular functions, leading to a linear program, which can be efficiently solved by the alternative direction method of multipliers (ADMM). Experimental results on several benchmark datasets demonstrate the improved performance of our method over several state-of-the-art methods.
引用
收藏
页码:2229 / 2236
页数:8
相关论文
共 50 条
  • [21] Multi-label Learning with Missing Labels Using Mixed Dependency Graphs
    Baoyuan Wu
    Fan Jia
    Wei Liu
    Bernard Ghanem
    Siwei Lyu
    International Journal of Computer Vision, 2018, 126 : 875 - 896
  • [22] Multi-label Learning with Missing Labels Using Mixed Dependency Graphs
    Wu, Baoyuan
    Jia, Fan
    Liu, Wei
    Ghanem, Bernard
    Lyu, Siwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (08) : 875 - 896
  • [23] SVM based multi-label learning with missing labels for image annotation
    Liu, Yang
    Wen, Kaiwen
    Gao, Quanxue
    Gao, Xinbo
    Nie, Feiping
    PATTERN RECOGNITION, 2018, 78 : 307 - 317
  • [24] Towards Class-Imbalance Aware Multi-Label Learning
    Zhang, Min-Ling
    Li, Yu-Kun
    Yang, Hao
    Liu, Xu-Ying
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (06) : 4459 - 4471
  • [25] Towards Class-Imbalance Aware Multi-Label Learning
    Zhang, Min-Ling
    Li, Yu-Kun
    Liu, Xu-Ying
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 4041 - 4047
  • [26] Multi-label Learning by Hyperparameters Calibration for Treating Class Imbalance
    Felipe Giraldo-Forero, Andres
    Felipe Cardona-Escobar, Andres
    Eduardo Castro-Ospina, Andres
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2018), 2018, 10870 : 327 - 337
  • [27] Multi-label classification with Missing Labels using Label Correlation and Robust Structural Learning
    Rastogi, Reshma
    Mortaza, Sayed
    KNOWLEDGE-BASED SYSTEMS, 2021, 229
  • [28] Learning Common and Label-Specific Features for Multi-Label Classification With Missing Labels
    Li, Runxin
    Ouyang, Zexian
    Shang, Zhenhong
    Jia, Lianyin
    Li, Xiaowu
    IEEE ACCESS, 2024, 12 : 81170 - 81195
  • [29] Learning Low-Rank Label Correlations for Multi-label Classification with Missing Labels
    Xu, Linli
    Wang, Zhen
    Shen, Zefan
    Wang, Yubo
    Chen, Enhong
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 1067 - 1072
  • [30] Improving multi-label classification with missing labels by learning label-specific features
    Huang, Jun
    Qin, Feng
    Zheng, Xiao
    Cheng, Zekai
    Yuan, Zhixiang
    Zhang, Weigang
    Huang, Qingming
    INFORMATION SCIENCES, 2019, 492 : 124 - 146