Image classification by using a reduced set of features in the TJ-II Thomson Scattering diagnostic

被引:2
|
作者
Farias, Gonzalo [1 ]
Dormido-Canto, Sebastian [2 ]
Vega, Jesus [3 ]
Martinez, Ismael [1 ]
Hermosill, Gabriel [1 ]
Fabregas, Ernesto [2 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Valparaiso, Chile
[2] UNED, Dept Informat & Automat, Madrid, Spain
[3] CIEMAT, Asociac EURATOM CIEMAT Fus, Madrid, Spain
关键词
Thomson Scattering diagnostic; TJ-II; Adaboost; Image classifier;
D O I
10.1016/j.fusengdes.2018.02.081
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Machine learning has been increasingly applied for developing pattern recognition systems in massive thermonuclear fusion databases. Several solutions can be found in the literature for fast retrieval of information, classification and forecasting of different types of waveforms. Images in fusion are not the exception, there are some data-driven models that have been successfully implemented to classify Thomson Scattering images in the TJ-II stellerator. Most of these image classifiers were developed by using techniques such as neural networks and support vector machines. One advantage of these techniques is that they only require a set of images and their corresponding classes to learn a decision function that provides the class to a new image. However, in general, this decision functions are commonly called black box models, because although they can achieve high success rates, it is difficult to explain why the classifier gives a particular response to a set of inputs. This work proposes the use of boosting algorithms to build data-driven models that use simple if-then rules and a small fraction of the original data to perform image classification of the TJ-II Thomson Scattering diagnostic.
引用
收藏
页码:99 / 103
页数:5
相关论文
共 50 条
  • [31] Optical relay design for an IR imaging diagnostic system in TJ-II fusion device
    Ruiz de Galarreta, Carlota
    Manzanares Ituarte, Ana
    de la Cal Heusch, Eduardo
    Liniers, Macarena
    Wolfers, Gilles
    OPTICAL SYSTEMS DESIGN 2012, 2012, 8550
  • [32] The first operation of the advanced heavy ion beam probing diagnostic on the TJ-II flexible heliac
    Krupnik, LI
    Bondarenko, IS
    Chmyga, AA
    Dreval, MB
    Khrebtov, SM
    Komarov, AD
    Kozachok, AS
    Hidalgo, C
    Garcia-Cortes, I
    Rodriguez-Rodrigo, L
    Melnikov, AV
    Coelho, P
    Cunha, M
    Goncalves, B
    Malaquias, A
    Nedzelskiy, IS
    Varandas, CAF
    FUSION ENGINEERING AND DESIGN, 2001, 56-57 : 935 - 939
  • [33] Plasma potential evolution study by HIBP diagnostic during NBI experiments in the TJ-II stellarator
    Melnikov, A. V.
    Alonso, A.
    Ascasibar, E.
    Balbin, R.
    Chmyga, A. A.
    Dnestrovskij, Yu. N.
    Eliseev, L. G.
    Estrada, T.
    Fontdecaba, J. M.
    Fuentes, C.
    Guasp, J.
    Herranz, J.
    Hidalgo, C.
    Komarov, A. D.
    Kozachek, A. S.
    Krupnik, L. I.
    Liniers, M.
    Lysenko, S. E.
    McCarthy, K. J.
    Ochando, M. A.
    Pastor, I.
    De Pablos, J. L.
    Pedrosa, M. A.
    Perfilov, S. V.
    Petrov, S. Ya.
    Tereshin, V. I.
    FUSION SCIENCE AND TECHNOLOGY, 2007, 51 (01) : 31 - 37
  • [34] Density profile reconstruction using HIBP in ECRH plasmas in the TJ-II stellarator
    Khabanov, Ph O.
    Eliseev, L. G.
    Melnikov, A., V
    Drabinskiy, M. A.
    Hidalgo, C.
    Kharchev, N. K.
    Chmyga, A. A.
    Kozachek, A. S.
    Pastor, I
    de Pablos, J. L.
    Cappa, A.
    Shevelko, V. P.
    JOURNAL OF INSTRUMENTATION, 2019, 14
  • [35] Turbulence radial correlation length measurements using Doppler reflectometry in TJ-II
    Fernandez-Marina, F.
    Estrada, T.
    Blanco, E.
    NUCLEAR FUSION, 2014, 54 (07)
  • [36] Using a Genetic Algorithm and the Grid to Improve Transport Levels in the TJ-II Stellarator
    Gomez-Iglesias, Antonio
    Cardenas-Montes, Miguel
    Morales-Ramos, Enrique
    Vega-Rodriguez, Miguel A.
    Castejon-Magana, Francisco
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING, 2008, : 81 - +
  • [37] Simplification of Grading Papillary Urothelial Neoplasia Using a Reduced Set of Diagnostic Features
    Isfoss, Bjorn L.
    Majak, Bernard
    Busch, Christer
    Braathen, Geir J.
    ANALYTICAL AND QUANTITATIVE CYTOLOGY AND HISTOLOGY, 2011, 33 (02): : 68 - 74
  • [38] Dimensionally Reduced Features for Hyperspectral Image Classification Using Deep Learning
    Charmisha, K. S.
    Sowmya, V.
    Soman, K. P.
    ICCCE 2018, 2019, 500 : 171 - 179
  • [39] Feasibility of local power losses determination in the TJ-II heliac using movable bolometers
    Ochando, M.A.
    Navarro, A.P.
    Vega, Jesus A.
    IEEE Transactions on Plasma Science, 1992, v (0n) : 316 - 322
  • [40] Investigation of proton rotation measurements using hydrogen line wings in the TJ-II stellarator
    Zurro, B
    Baciero, A
    McCarthy, KJ
    Tribaldos, V
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (03): : 2056 - 2059