Modified function projective combination synchronization of hyperchaotic systems

被引:6
|
作者
Sudheer, K. Sebastian [1 ]
Sabir, M. [2 ]
机构
[1] Univ Calicut, Christ Coll, Dept Phys, Trichur 680125, India
[2] Cochin Univ Sci & Technol, Dept Phys, Cochin 682022, Kerala, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 88卷 / 03期
关键词
Combination hyperchaotic system; modified function projective combination synchronization; adaptive control; hyperchaotic Lorenz system; hyperchaotic Lu system; Lyapunov stability theory; GENERALIZED SYNCHRONIZATION; CHAOS; PHASE;
D O I
10.1007/s12043-016-1345-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, a novel combination synchronization scheme in which synchronization of a new combination hyperchaotic drive system formed by combining state variables of the original drive system with appropriate scaling factors with a response hyperchaotic system is considered. A self-combination system is constructed from hyperchaotic Lorenz system by combining state variables of the Lorenz system with appropriate scaling factors. Modified function projective synchronization between the newly constructed combination hyperchaotic Lorenz system and hyperchaotic Lu system is investigated using adaptive method. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the state of two systems as modified function projective synchronized. Numerical simulations are done to show the validity and effectiveness of the proposed synchronization scheme.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Modified function projective combination synchronization of hyperchaotic systems
    K SEBASTIAN SUDHEER
    M SABIR
    [J]. Pramana, 2017, 88
  • [2] Adaptive modified function projective synchronization of different hyperchaotic systems
    Wang Jian-An
    Liu He-Ping
    [J]. ACTA PHYSICA SINICA, 2010, 59 (04) : 2265 - 2271
  • [3] Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters
    Zheng, Song
    Dong, Gaogao
    Bi, Qinsheng
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) : 3547 - 3556
  • [4] Control and adaptive modified function projective synchronization of different hyperchaotic dynamical systems
    El-Dessoky, M. M.
    Almohammadi, Nehad
    Alzahrani, Ebraheem
    [J]. AIMS MATHEMATICS, 2023, 8 (10): : 23621 - 23634
  • [5] On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization
    Mahmoud, Gamal M.
    Ahmed, Mansour E.
    Abed-Elhameed, Tarek M.
    [J]. OPTIK, 2017, 130 : 398 - 406
  • [6] Modified function lag projective synchronization of a financial hyperchaotic system
    Cai, Guoliang
    Hu, Pei
    Li, Yuxiu
    [J]. NONLINEAR DYNAMICS, 2012, 69 (03) : 1457 - 1464
  • [7] Adaptive Modified Function Projective Synchronization between Two Different Hyperchaotic Dynamical Systems
    El-Dessoky, M. M.
    Yassen, M. T.
    Saleh, E.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [8] Modified function lag projective synchronization of a financial hyperchaotic system
    Guoliang Cai
    Pei Hu
    Yuxiu Li
    [J]. Nonlinear Dynamics, 2012, 69 : 1457 - 1464
  • [9] Modified function projective lag synchronization in fractional-order chaotic (hyperchaotic) systems
    Luo Chao
    Wang Xingyuan
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (10) : 1498 - 1511
  • [10] Generation and Modified Projective Synchronization for a Class of New Hyperchaotic Systems
    Jia, Nuo
    Wang, Tao
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,