Adaptive modified function projective synchronization of different hyperchaotic systems

被引:13
|
作者
Wang Jian-An [1 ]
Liu He-Ping [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Informat Engn, Beijing 100083, Peoples R China
关键词
modified function projective synchronization; hyperchaotic system; Lyapunov stability theory; adaptive control; CHAOTIC SYSTEMS;
D O I
10.7498/aps.59.2264
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article heats the modified function projective synchronization between the hyperchaotic Lorenz-Stenflo (LS) system and a novel hyperchaotic CYQY system, and also that between the LS system and hyperchaotic Chen system, which have completely unknown parameters. By utilizing Lyapunov stability theory and active control method, the adaptive controllers and parameter update laws are derived to make the states of different hyperchaotic systems to attain adaptive modified function projective synchronization The system's unknown parameters can be identified simultaneously Numerical simulations are presented to demonstrate the effectiveness of the proposed methods
引用
下载
收藏
页码:2265 / 2271
页数:7
相关论文
共 22 条
  • [1] Adaptive synchronization and anti-synchronization of two different chaotic systems
    Cai Na
    Jing Yuan-Wei
    Zhang Si-Ying
    [J]. ACTA PHYSICA SINICA, 2009, 58 (02) : 802 - 813
  • [2] Controlling and synchronizing chaotic Genesio system via nonlinear feedback control
    Chen, MY
    Han, ZZ
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 17 (04) : 709 - 716
  • [3] A novel hyperchaos system only with one equilibrium
    Chen, Zengqiang
    Yang, Yong
    Qi, Guoyuan
    Yuan, Zhuzhi
    [J]. PHYSICS LETTERS A, 2007, 360 (06) : 696 - 701
  • [4] Function projective synchronization of different chaotic systems with uncertain parameters
    Du, Hongyue
    Zeng, Qingshuang
    Wang, Changhong
    [J]. PHYSICS LETTERS A, 2008, 372 (33) : 5402 - 5410
  • [5] Reduced-order synchronization of chaotic systems with parameters unknown
    Ho, MC
    Hung, YC
    Liu, ZY
    Jiang, IM
    [J]. PHYSICS LETTERS A, 2006, 348 (3-6) : 251 - 259
  • [6] HUANG J, 2008, PHYS LETT A, V362, P4799
  • [7] Generalized projective synchronization of chaos: The cascade synchronization approach
    Li, Changpin
    Yan, Jianping
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (01) : 140 - 146
  • [8] Modified projective synchronization of chaotic system
    Li, Guo-Hui
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 32 (05) : 1786 - 1790
  • [9] Generalized projective synchronization of two chaotic systems by using active control
    Li, Guo-Hui
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (01) : 77 - 82
  • [10] A new method of synchronization between two different chaotic systems
    Li Shuang
    Xu Wei
    Li Rui-Hong
    Li Yu-Peng
    [J]. ACTA PHYSICA SINICA, 2006, 55 (11) : 5681 - 5687