VECTOR FIELDS WHOSE LINEARISATION IS HURWITZ ALMOST EVERYWHERE

被引:3
|
作者
Pires, Benito [1 ]
Rabanal, Roland [2 ]
机构
[1] Univ Sao Paulo, Dept Comp & Matemat, Fac Filosofia Ciencias & Letras, BR-14040901 Ribeirao Preto, SP, Brazil
[2] Pontificia Univ Catolica Peru, Secc Matemat, Lima 32, Peru
基金
巴西圣保罗研究基金会;
关键词
GLOBAL ASYMPTOTIC STABILITY; PLANE;
D O I
10.1090/S0002-9939-2014-12035-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A real matrix is Hurwitz if its eigenvalues have negative real parts. The following generalisation of the Bidimensional Global Asymptotic Stability Problem (BGAS) is provided. Let X : R-2 -> R-2 be a C-1 vector field whose Jacobian matrix DX(p) is Hurwitz for Lebesgue almost all p is an element of R-2. Then the singularity set of X is either an empty set, a one-point set or a non-discrete set. Moreover, if X has a hyperbolic singularity, then X is topologically equivalent to the radial vector field (x, y) bar right arrow (-x, -y). This generalises BGAS to the case in which the vector field is not necessarily a local diffeomorphism.
引用
收藏
页码:3117 / 3128
页数:12
相关论文
共 50 条