A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol

被引:87
|
作者
Tong, Jiansong [1 ]
Borbat, Peter P. [2 ,3 ]
Freed, Jack H. [2 ,3 ]
Shin, Yeon-Kyun [1 ,4 ]
机构
[1] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA
[2] Cornell Univ, Baker Lab B52, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[3] Cornell Univ, Baker Lab B52, Adv ESR Technol Ctr, Ithaca, NY 14853 USA
[4] Pohang Univ Sci & Technol, Pohang 790784, South Korea
基金
美国国家卫生研究院;
关键词
EPR; membrane fusion; syntaxin; synaptobrevin; PAIR DISTANCE DISTRIBUTIONS; MEMBRANE-FUSION REQUIRES; CONFORMATIONAL-CHANGES; PROTEIN-STRUCTURE; SYNAPTIC EXOCYTOSIS; PULSED ELECTRON; NEURONAL SNARES; ESR; HEMIFUSION; DYNAMICS;
D O I
10.1073/pnas.0813138106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neurotransmitter release at the synapse requires membrane fusion. The SNARE complex, composed of the plasma membrane t-SNAREs syntaxin 1A and SNAP-25 and the vesicle v-SNARE synaptobrevin, mediates the fusion of 2 membranes. Synaptic vesicles contain unusually high cholesterol, but the exact role of cholesterol in fusion is not known. In this study, cholesterol was found to stimulate SNARE-mediated lipid mixing of proteoliposomes by a factor of 5 at a physiological concentration. Surprisingly, however, the stimulatory effect was more pronounced when cholesterol was on the v-SNARE side than when it was on the t-SNARE side. Site-directed spin labeling and both continuous wave (CW) and pulsed EPR revealed that cholesterol induces a conformational change of the v-SNARE transmembrane domain (TMD) from an open scissors-like dimer to a parallel dimer. When the TMD was forced to form a parallel dimer by the disulfide bond, the rate was stimulated 2.3-fold even without cholesterol, supporting the relevance of the open-to-closed conformational change to the fusion activity. The open scissors-like conformation may be unfavorable for fusion and cholesterol may relieve this inhibitory factor.
引用
收藏
页码:5141 / 5146
页数:6
相关论文
共 50 条
  • [11] SNARE-Mediated Cholesterol Movement to Mitochondria Supports Steroidogenesis in Rodent Cells
    Lin, Ye
    Hou, Xiaoming
    Shen, Wen-Jun
    Hanssen, Ruth
    Khor, Victor K.
    Cortez, Yuan
    Roseman, Ann N.
    Azhar, Salman
    Kraemer, Fredric B.
    MOLECULAR ENDOCRINOLOGY, 2016, 30 (02) : 234 - 247
  • [12] Snare-mediated membrane fusion
    Chen, YA
    Scheller, RH
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (02) : 98 - 106
  • [13] Accelerating SNARE-Mediated Membrane Fusion by DNA-Lipid Tethers
    Xu, Weiming
    Wang, Jing
    Rothman, James E.
    Pincet, Frederic
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (48) : 14388 - 14392
  • [15] A single-vesicle content mixing assay for SNARE-mediated membrane fusion
    Jiajie Diao
    Zengliu Su
    Yuji Ishitsuka
    Bin Lu
    Kyung Suk Lee
    Ying Lai
    Yeon-Kyun Shin
    Taekjip Ha
    Nature Communications, 1
  • [16] A single-vesicle content mixing assay for SNARE-mediated membrane fusion
    Diao, Jiajie
    Su, Zengliu
    Ishitsuka, Yuji
    Lu, Bin
    Lee, Kyung Suk
    Lai, Ying
    Shin, Yeon-Kyun
    Ha, Taekjip
    NATURE COMMUNICATIONS, 2010, 1
  • [17] Fusion Step-Specific Influence of Cholesterol on SNARE-Mediated Membrane Fusion
    Chang, Jinyoung
    Kim, Sun-Ae
    Lu, Xiaobing
    Su, Zengliu
    Kim, Seong Keun
    Shin, Yeon-Kyun
    BIOPHYSICAL JOURNAL, 2009, 96 (05) : 1839 - 1846
  • [18] Hemifusion in SNARE-mediated membrane fusion
    Yibin Xu
    Fan Zhang
    Zengliu Su
    James A McNew
    Yeon-Kyun Shin
    Nature Structural & Molecular Biology, 2005, 12 : 417 - 422
  • [19] Lipidic antagonists to SNARE-mediated fusion
    Melia, Thomas J.
    You, Daoqi
    Tareste, David C.
    Rothman, James E.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (40) : 29597 - 29605
  • [20] SNARE-mediated membrane fusion in autophagy
    Wang, Yongyao
    Li, Linsen
    Hou, Chen
    Lai, Ying
    Long, Jiangang
    Liu, Jiankang
    Zhong, Qing
    Diao, Jiajie
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2016, 60 : 97 - 104