Breather solutions of the cubic Klein-Gordon equation

被引:8
|
作者
Scheider, Dominic [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
Klein-Gordon equation; breather; bifurcation; nonlinear Helmholtz system; GLOBAL EXISTENCE; PRINCIPLE;
D O I
10.1088/1361-6544/abb78b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain real-valued, time-periodic and radially symmetric solutions of the cubic Klein-Gordon equation partial derivative U-2(t)-Delta U+m(2)U=Gamma(x)U-3 on R x R-3, which are weakly localized in space. Various families of such 'breather' solutions are shown to bifurcate from any given nontrivial stationary solution. The construction of weakly localized breathers in three space dimensions is, to the author's knowledge, a new concept and based on the reformulation of the cubic Klein-Gordon equation as a system of coupled nonlinear Helmholtz equations involving suitable conditions on the far field behavior.
引用
收藏
页码:7140 / 7166
页数:27
相关论文
共 50 条
  • [1] SIMILARITY SOLUTIONS OF THE CUBIC NONLINEAR KLEIN-GORDON EQUATION
    ZHANG, JF
    LIN, J
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (01) : 39 - 42
  • [2] Breather solutions for a semilinear Klein-Gordon equation on a periodic metric graph
    Maier, Daniela
    Reichel, Wolfgang
    Schneider, Guido
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (02)
  • [3] Cubic root of Klein-Gordon equation
    Plyushchay, MS
    de Traubenberg, MR
    [J]. PHYSICS LETTERS B, 2000, 477 (1-3) : 276 - 284
  • [4] New explicit solutions for the Klein-Gordon equation with cubic nonlinearity
    Ye, Caier
    Zhang, Weiguo
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) : 716 - 724
  • [5] Small Amplitude Breather of the Nonlinear Klein-Gordon Equation
    Zav'yalov, D. V.
    Konchenkov, V. I.
    Kryuchkov, S. V.
    [J]. TECHNICAL PHYSICS, 2024, 69 (04) : 1075 - 1081
  • [6] Establishing breather and N-soliton solutions for conformable Klein-Gordon equation
    Bilal, Muhammad
    Iqbal, Javed
    Ali, Rashid
    Awwad, Fuad A.
    Ismail, Emad A. A.
    [J]. OPEN PHYSICS, 2024, 22 (01):
  • [7] Recurrence and Resonance in the Cubic Klein-Gordon Equation
    Verhulst, Ferdinand
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2019, 162 (01) : 145 - 164
  • [8] Recurrence and Resonance in the Cubic Klein-Gordon Equation
    Ferdinand Verhulst
    [J]. Acta Applicandae Mathematicae, 2019, 162 : 145 - 164
  • [9] NONDISPERSIVE SOLUTIONS OF THE KLEIN-GORDON EQUATION
    HILLION, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) : 1817 - 1821
  • [10] CONTINUUM SOLUTIONS OF THE KLEIN-GORDON EQUATION
    JANSEN, G
    PUSCH, M
    SOFF, G
    [J]. ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1988, 8 (04): : 315 - 327