Analysis of a heuristic for acyclic edge colouring

被引:7
|
作者
Subramanian, C. R. [1 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
analysis of algorithms; acyclic edge colouring;
D O I
10.1016/j.ipl.2006.05.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An acyclic edge colouring of a graph is a proper edge colouring in which the union of any two colour classes does not contain a cycle, that is, forms a forest. It is known that there exists such a colouring using at most 16 Delta(G) colours where A(G) denotes the maximum degree of a graph G. However, no non-trivial constructive bound (which works for all graphs) is known except for the straightforward distance 2 colouring which requires Delta(2) colours. We analyse a simple O(mn Delta(2) (log Delta)(2)) time greedy heuristic and show that it uses at most 5 Delta(log z Delta + 2) colours on any graph. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:227 / 229
页数:3
相关论文
共 50 条
  • [21] Equipartite edge colouring of multigraphs
    Gionfriddo, Mario
    Amato, Alberto
    Ragusa, Giorgio
    UTILITAS MATHEMATICA, 2011, 86 : 297 - 304
  • [22] Facial parity edge colouring
    Czap, Julius
    Jendrol', Stanislav
    Kardos, Frantisek
    ARS MATHEMATICA CONTEMPORANEA, 2011, 4 (02) : 255 - 269
  • [23] Edge-colouring and total-colouring chordless graphs
    Machado, Raphael C. S.
    de Figueiredo, Celina M. H.
    Trotignon, Nicolas
    DISCRETE MATHEMATICS, 2013, 313 (14) : 1547 - 1552
  • [24] GENERAL AND ACYCLIC SUM-LIST-COLOURING OF GRAPHS
    Drgas-Burchardt, Ewa
    Drzystek, Agata
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 479 - 500
  • [25] Acyclic improper colouring of graphs with maximum degree 4
    Anna Fiedorowicz
    Elżbieta Sidorowicz
    Science China Mathematics, 2014, 57 : 2485 - 2494
  • [26] The acyclic colouring, triangle number and chromatic polynomial of a graph
    Dong, FM
    Koh, KM
    ALGEBRAS AND COMBINATORICS, 1999, : 217 - 236
  • [27] Acyclic improper colouring of graphs with maximum degree 4
    Fiedorowicz, Anna
    Sidorowicz, Elzbieta
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (12) : 2485 - 2494
  • [28] On Vizing's edge colouring question
    Bonamy, Marthe
    Defrain, Oscar
    Klimosova, Tereza
    Lagoutte, Aurelie
    Narboni, Jonathan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 159 : 126 - 139
  • [29] Edge-colouring of join graphs
    De Simone, C
    de Mello, CP
    THEORETICAL COMPUTER SCIENCE, 2006, 355 (03) : 364 - 370
  • [30] Strong edge colouring of subcubic graphs
    Hocquard, Herve
    Valicov, Petru
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (15) : 1650 - 1657