Ruled minimal Lagrangian submanifolds of complex projective 3-space

被引:0
|
作者
Bolton, J [1 ]
Vrancken, L
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Univ Valenciennes, LAMATH, ISTV2, F-59313 Valenciennes, France
关键词
complex projective space; Lagrangian submanifold; sphere; minimal surface;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show how a ruled minimal Lagrangian submanifold of complex projective 3-space may be used to construct two related minimal surfaces in the 5-sphere.
引用
收藏
页码:45 / 55
页数:11
相关论文
共 50 条
  • [1] On Einstein Lagrangian submanifolds of a complex projective space
    Matsuyama, Y
    [J]. GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 225 - 231
  • [2] Lagrangian submanifolds in complex projective space CPn
    Xiaoxiang Jiao
    Chiakuei Peng
    Xiaowei Xu
    [J]. Frontiers of Mathematics in China, 2012, 7 : 1129 - 1140
  • [3] WILLMORE LAGRANGIAN SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACE
    Shu, Shichang
    Liu, Sanyang
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (02): : 343 - 357
  • [4] Lagrangian submanifolds in complex projective space CPn
    Jiao, Xiaoxiang
    Peng, Chiakuei
    Xu, Xiaowei
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (06) : 1129 - 1140
  • [5] Lagrangian submanifolds of the three dimensional complex projective space
    Montealegre, CR
    Vrancken, L
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2001, 53 (03) : 603 - 631
  • [6] MINIMAL LAGRANGIAN SUBMANIFOLDS IN INDEFINITE COMPLEX SPACE
    Anciaux, Henri
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) : 1331 - 1343
  • [7] Minimal Lagrangian submanifolds in the complex hyperbolic space
    Castro, I
    Montealegre, CR
    Urbano, F
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (03) : 695 - 721
  • [8] Minimal 5(2)-ideal Lagrangian submanifolds and the quaternionic projective space
    Dekimpe, Kristof
    Van der Veken, Joeri
    Vrancken, Luc
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 191
  • [9] ON TOTALLY REAL MINIMAL SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACE
    Chao, Xiaoli
    Li, Yaowen
    [J]. ARCHIVUM MATHEMATICUM, 2005, 41 (01): : 107 - 116
  • [10] TOTALLY REAL MINIMAL SUBMANIFOLDS IN A COMPLEX PROJECTIVE SPACE
    沈一兵
    [J]. Science Bulletin, 1983, (08) : 1018 - 1021