Enhanced synapse remodelling as a common phenotype in mouse models of autism

被引:112
|
作者
Isshiki, Masaaki [1 ]
Tanaka, Shinji [1 ]
Kuriu, Toshihiko [2 ]
Tabuchi, Katsuhiko [3 ,4 ]
Takumi, Toru [5 ,6 ]
Okabe, Shigeo [1 ]
机构
[1] Univ Tokyo, Grad Sch Med, Dept Cellular Neurobiol, Bunkyo Ku, Tokyo 1130033, Japan
[2] Tokushima Bunri Univ, Kagawa Sch Pharmaceut Sci, Dept Neurophysiol, Tokushima, Kagawa 7692193, Japan
[3] Shinshu Univ, Dept Mol & Cellular Physiol, Sch Med, Matsumoto, Nagano 3908621, Japan
[4] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[5] RIKEN, Brain Sci Inst, Wako, Saitama 3510198, Japan
[6] Japan Sci & Technol Agcy JST, CREST, Kawaguchi, Saitama 3320012, Japan
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
关键词
FRAGILE-X MICE; LONG-TERM; DENDRITIC SPINES; SOMATOSENSORY CORTEX; CRANIAL WINDOW; THALAMOCORTICAL SYNAPSES; POSTSYNAPTIC DENSITY; INHIBITORY SYNAPSES; PYRAMIDAL NEURONS; FRONTAL-CORTEX;
D O I
10.1038/ncomms5742
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Developmental deficits in neuronal connectivity are considered to be present in patients with autism spectrum disorders (ASDs). Here we examine this possibility by using in vivo spine imaging in the early postnatal cortex of ASD mouse models. Spines are classified by the presence of either the excitatory postsynaptic marker PSD-95 or the inhibitory postsynaptic marker gephyrin. ASD mouse models show consistent upregulation in the dynamics of PSD-95-positive spines, which may subsequently contribute to stable synaptic connectivity. In contrast, spines receiving inputs from the thalamus, detected by the presence of gephyrin clusters, are larger, highly stable and unaffected in ASD mouse models. Importantly, two distinct mouse models, human 15q11-13 duplication and neuroligin-3 R451C point mutation, show highly similar phenotypes in spine dynamics. This selective impairment in dynamics of PSD-95-positive spines receiving intracortical projections may be a core component of early pathological changes and be a potential target of early intervention.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Behavioral phenotypes of genetic mouse models of autism
    Kazdoba, T. M.
    Leach, P. T.
    Crawley, J. N.
    GENES BRAIN AND BEHAVIOR, 2016, 15 (01) : 7 - 26
  • [32] Mouse models for autism: report from a meeting
    Insel, TR
    MAMMALIAN GENOME, 2001, 12 (10) : 755 - 757
  • [33] Cardiac phenotype in mouse models of systemic autoimmunity
    Sanghera, Chandan
    Wong, Lok Man
    Panahi, Mona
    Sintou, Amalia
    Hasham, Muneer
    Sattler, Susanne
    DISEASE MODELS & MECHANISMS, 2019, 12 (03)
  • [34] The Respiratory Phenotype of Pompe Disease Mouse Models
    Fusco, Anna F.
    McCall, Angela L.
    Dhindsa, Justin S.
    Zheng, Lucy
    Bailey, Aidan
    Kahn, Amanda F.
    ElMallah, Mai K.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (06)
  • [35] A retinal phenotype in Usher IIIA mouse models
    Stupay, Rachel
    Smith, W. Clay
    Deng, Wen-Tao
    Zhu, Ping
    Hauswirth, William
    Dinculescu, Astra
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [36] Enhanced Transmission at the Calyx of Held Synapse in a Mouse Model for Angelman Syndrome
    Wang, Tiantian
    van Woerden, Geeske M.
    Elgersma, Ype
    Borst, J. Gerard G.
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2018, 11
  • [37] Genotype/phenotype correlation in autism: Genetic models and phenotypic characterization
    Bonnet-Brilhault, F.
    ENCEPHALE-REVUE DE PSYCHIATRIE CLINIQUE BIOLOGIQUE ET THERAPEUTIQUE, 2011, 37 (01): : 68 - 74
  • [38] Complement and microglia mediate early synapse loss in Alzheimer mouse models
    Hong, Soyon
    Beja-Glasser, Victoria F.
    Nfonoyim, Bianca M.
    Frouin, Arnaud
    Li, Shaomin
    Ramakrishnan, Saranya
    Merry, Katherine M.
    Shi, Qiaoqiao
    Rosenthal, Arnon
    Barres, Ben A.
    Lemere, Cynthia A.
    Selkoe, Dennis J.
    Stevens, Beth
    SCIENCE, 2016, 352 (6286) : 712 - 716
  • [39] Inhibitory CCK plus basket synapse defects in mouse models of dystroglycanopathy
    Jahncke, Jennifer N.
    Miller, Daniel S.
    Krush, Milana
    Schnell, Eric
    Wright, Kevin M.
    ELIFE, 2024, 12
  • [40] The German Mouse Clinic: A Platform for Systemic Phenotype Analysis of Mouse Models
    Fuchs, H.
    Gailus-Durner, V.
    Adler, T.
    Pimentel, J. A. Aguilar
    Becker, L.
    Bolle, I.
    Brielmeier, M.
    Calzada-Wack, J.
    Dalke, C.
    Ehrhardt, N.
    Fasnacht, N.
    Ferwagner, B.
    Frischmann, U.
    Hans, W.
    Hoelter, S. M.
    Hoelzlwimmer, G.
    Horsch, M.
    Javaheri, A.
    Kallnik, M.
    Kling, E.
    Lengger, C.
    Maier, H.
    Mossbrugger, I.
    Moerth, C.
    Naton, B.
    Noeth, U.
    Pasche, B.
    Prehn, C.
    Przemeck, G.
    Puk, O.
    Racz, I.
    Rathkolb, B.
    Rozman, J.
    Schaeble, K.
    Schreiner, R.
    Schrewe, A.
    Sina, C.
    Steinkamp, R.
    Thiele, F.
    Willershaeuser, M.
    Zeh, R.
    Adamski, J.
    Busch, D. H.
    Beckers, J.
    Behrendt, H.
    Daniel, H.
    Esposito, I.
    Favor, J.
    Graw, J.
    Heldmaier, G.
    CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2009, 10 (02) : 236 - 243