CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication

被引:124
|
作者
Langston, Lance D. [1 ,2 ]
Zhang, Dan [1 ,2 ]
Yurieva, Olga [1 ,2 ]
Georgescu, Roxana E. [1 ,2 ]
Finkelstein, Jeff [1 ,2 ]
Yao, Nina Y. [1 ,2 ]
Indiani, Chiara [3 ]
O'Donnell, Mike E. [1 ,2 ]
机构
[1] Rockefeller Univ, New York, NY 10065 USA
[2] Howard Hughes Med Inst, New York, NY 10065 USA
[3] Manhattan Coll, Riverdale, NY 10471 USA
关键词
DNA replication; replication fork; helicase; polymerase; CMG; SACCHAROMYCES-CEREVISIAE; MCM2-7; HELICASE; BUDDING YEAST; IN-VITRO; NONCATALYTIC SUBUNIT; ESCHERICHIA-COLI; CHROMOSOMAL DNA; GINS; REPLISOME; COMPLEX;
D O I
10.1073/pnas.1418334111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol alpha/primase initiates primers on both strands that are extended by Pol epsilon on the leading strand and by Pol delta on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol epsilon for leading-strand synthesis, but to date a direct interaction between CMG and Pol epsilon has not been demonstrated. While purifying CMG helicase over-expressed in yeast, we detected a functional complex between CMG and native Pol epsilon. Using pure CMG and Pol epsilon, we reconstituted a stable 15-subunitCMG-Pol epsilon complex and showed that it is a functional polymerase-helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol epsilon is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol epsilon, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol delta function with CMG, and thus we propose that the connection between Dpb2 andCMGhelps to stabilize Pol epsilon on the leading strand as part of a 15-subunit leading- strand holoenzyme we refer to as CMGE. Direct binding between Pol epsilon and CMG provides an explanation for specific targeting of Pol epsilon to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes.
引用
收藏
页码:15390 / 15395
页数:6
相关论文
共 50 条