Approximation properties for King's type modified q-Bernstein-Kantorovich operators

被引:26
|
作者
Mursaleen, M. [1 ]
Khan, Faisal [1 ]
Khan, Asif [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
King's type operators; q-Bernstein-Kantorovich operators; Korovkin type approximation theorems; modulus of continuity; Peetre's K-functional; Lipschitz class; WEIGHTED STATISTICAL CONVERGENCE; PERIODIC-FUNCTIONS; THEOREMS;
D O I
10.1002/mma.3454
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present research article, we introduce the King's type modification of q-Bernstein-Kantorovich operators and investigate some approximation properties. We show comparisons and present some illustrative graphics for the convergence of these operators to some function. Copyright (C) 2015 JohnWiley & Sons, Ltd.
引用
收藏
页码:5242 / 5252
页数:11
相关论文
共 50 条
  • [31] Approximation by Bivariate (p, q)-Bernstein-Kantorovich Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 655 - 662
  • [32] Approximation Properties of λ-Bernstein-Kantorovich-Stancu Operators
    Bodur, Murat
    Manav, Nesibe
    Tasdelen, Fatma
    MATHEMATICA SLOVACA, 2022, 72 (01) : 141 - 152
  • [33] q-Bernstein-Schurer-Kantorovich type operators
    P. N. Agrawal
    Meenu Goyal
    Arun Kajla
    Bollettino dell'Unione Matematica Italiana, 2015, 8 (3) : 169 - 180
  • [34] q-Bernstein-Schurer-Kantorovich type operators
    Agrawal, P. N.
    Goyal, Meenu
    Kajla, Arun
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 169 - 180
  • [35] Kantorovich type q-Bernstein-Stancu operators
    Erencin, Aysegul
    Bascanbaz-Tunca, Gulen
    Tasdelen, Fatma
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2012, 57 (01): : 89 - 105
  • [36] Approximation properties by shifted knots type of α-Bernstein-Kantorovich-Stancu operators
    Nasiruzzaman, Md.
    Dilshad, Mohammad
    Albalawi, Bader Mufadhi Eid
    Ajmal, Mohammad Rehan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [37] Convergence analysis of modified Bernstein–Kantorovich type operators
    Abhishek Senapati
    Ajay Kumar
    Tanmoy Som
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3749 - 3764
  • [38] Rate of Convergence of Modified Schurer-Type q-Bernstein Kantorovich Operators
    Sidharth, Manjari
    Agrawal, P. N.
    MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 243 - 253
  • [39] Approximation by nonlinear Bernstein-Chlodowsky operators of Kantorovich type
    Acar, Ecem
    Guller, Ozge Ozalp
    Serenbay, Sevilay Kirci
    FILOMAT, 2023, 37 (14) : 4621 - 4627
  • [40] Approximation Degree of Bivariate Generalized λ-Bernstein - Kantorovich Type Operators
    Agrawal, Purshottam Narain
    Baxhaku, Behar
    Singh, Sompal
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (12) : 1484 - 1509