On nonparametric density estimation at the boundary

被引:31
|
作者
Zhang, SP
Karunamuni, RJ [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Alaska, Dept Math Sci, Fairbanks, AK 99775 USA
基金
加拿大自然科学与工程研究理事会;
关键词
density estimation; boundary effects; local polynomial smoothers; bandwidth variation; optimal kernel;
D O I
10.1080/10485250008832805
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Boundary effects are well known to occur in nonparametric density estimation when the support of the density has a finite endpoint. The usual kernel density estimators require modifications when estimating the density near endpoints of the support. In this paper, we propose a new and intuitive method of removing boundary effects in density estimation. Our idea, which replaces the unwanted terms in the bias expansion by their estimators, offers new ways of constructing boundary kernels and optimal endpoint kernels. We also discuss the choice of bandwidth variation functions at the boundary region. The performance of our results are numerically analyzed in a Monte Carlo study.
引用
收藏
页码:197 / 221
页数:25
相关论文
共 50 条
  • [31] NONPARAMETRIC-ESTIMATION OF DENSITY PROFILES
    MERRITT, D
    TREMBLAY, B
    ASTRONOMICAL JOURNAL, 1994, 108 (02): : 514 - 537
  • [32] SPLINES IN NONPARAMETRIC-ESTIMATION OF THE DENSITY
    AIDU, FA
    AUTOMATION AND REMOTE CONTROL, 1987, 48 (08) : 1033 - 1040
  • [33] Nonparametric estimation of the density of regression errors
    Samb, Rawane
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (23-24) : 1281 - 1285
  • [34] Nonparametric estimation of quantile density function
    Soni, Pooja
    Dewan, Isha
    Jain, Kanchan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 3876 - 3886
  • [35] Clustering via nonparametric density estimation
    Azzalini, Adelchi
    Torelli, Nicola
    STATISTICS AND COMPUTING, 2007, 17 (01) : 71 - 80
  • [36] Nonparametric Density Estimation with Adversarial Losses
    Singh, Shashank
    Uppal, Ananya
    Li, Boyue
    Li, Chun-Liang
    Zaheer, Manzil
    Poczos, Barnabas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [37] Nonparametric estimation of the density of the regression noise
    Plancade, Sandra
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (7-8) : 461 - 466
  • [38] On nonparametric estimation of density level sets
    Tsybakov, AB
    ANNALS OF STATISTICS, 1997, 25 (03): : 948 - 969
  • [39] NONPARAMETRIC DENSITY ESTIMATION - A NUMERICAL EXPLORATION
    Evangelista, Paul F.
    Mittal, Vikram
    2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 2189 - 2197
  • [40] An Estimation of Distribution Algorithm based on Nonparametric Density Estimation
    Zhou, Luhan
    Zhou, Aimin
    Zhang, Guixu
    Shi, Chuan
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1597 - 1604