Precision measurement at the quantum limit in gravitational wave detectors

被引:0
|
作者
Mavalvala, N. [1 ]
机构
[1] MIT, LIGO Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
NOISE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Interferometric gravitational wave detectors are poised to launch a new era of gravitational-wave astronomy. I will describe the basic principles behind gravitational wave detection and how we achieve sub-attometer displacement sensitivity in kilometer-scale laser interferometers using precision measurement techniques that include quantum optics and optomechanics.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Crosscorrelation measurement of stochastic gravitational waves with two resonant gravitational wave detectors
    Astone, P
    Bassan, M
    Bonifazi, P
    Carelli, P
    Cosmelli, C
    Coccia, E
    Fafone, V
    Frasca, S
    Marini, A
    Minenkov, Y
    Modena, I
    Modestino, G
    Moleti, A
    Pallottino, GV
    Papa, MA
    Pizzella, G
    Ronga, F
    Terenzi, R
    Visco, M
    Votano, L
    ASTRONOMY & ASTROPHYSICS, 1999, 351 (03) : 811 - 814
  • [22] Gravitational wave detectors
    Aufmuth, P
    Danzmann, K
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [23] Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors
    McClelland, David E.
    Mavalvala, Nergis
    Chen, Yanbei
    Schnabel, Roman
    LASER & PHOTONICS REVIEWS, 2011, 5 (05) : 677 - 696
  • [25] Unification of Thermal and Quantum Noises in Gravitational-Wave Detectors
    Whittle, Chris
    McCuller, Lee
    Sudhir, Vivishek
    Evans, Matthew
    PHYSICAL REVIEW LETTERS, 2023, 130 (24)
  • [26] Advanced quantum techniques for future gravitational-wave detectors
    Danilishin, Stefan L.
    Khalili, Farid Ya.
    Miao, Haixing
    LIVING REVIEWS IN RELATIVITY, 2019, 22 (1)
  • [27] Quantum correlation measurements in interferometric gravitational-wave detectors
    Martynov, D. V.
    Frolov, V. V.
    Kandhasamy, S.
    Izumi, K.
    Miao, H.
    Mavalvala, N.
    Hall, E. D.
    Lanza, R.
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Adams, C.
    Adhikari, R. X.
    Anderson, S. B.
    Ananyeva, A.
    Appert, S.
    Arai, K.
    Aston, S. M.
    Ballmer, S. W.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Bartlett, J.
    Bartos, I.
    Batch, J. C.
    Bell, A. S.
    Betzwieser, J.
    Billingsley, G.
    Birch, J.
    Biscans, S.
    Biwer, C.
    Blair, C. D.
    Bork, R.
    Brooks, A. F.
    Ciani, G.
    Clara, F.
    Countryman, S. T.
    Cowart, M. J.
    Coyne, D. C.
    Cumming, A.
    Cunningham, L.
    Danzmann, K.
    Costa, C. F. Da Silva
    Daw, E. J.
    Debra, D.
    DeRosa, R. T.
    DeSalvo, R.
    Dooley, K. L.
    Doravari, S.
    Driggers, J. C.
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [28] Balanced homodyne readout for quantum limited gravitational wave detectors
    Fritschel, Peter
    Evans, Matthew
    Frolov, Valery
    OPTICS EXPRESS, 2014, 22 (04): : 4224 - 4234
  • [29] Advanced quantum techniques for future gravitational-wave detectors
    Stefan L. Danilishin
    Farid Ya. Khalili
    Haixing Miao
    Living Reviews in Relativity, 2019, 22
  • [30] A solvable model of gravitational wave detector and the standard quantum limit
    Chebotarev, AA
    Tchourkin, AV
    Ryzhakov, GV
    Sinev, AM
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2003, 10 (02) : 134 - 141