Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers

被引:414
|
作者
Rege, BD
Kao, JPY
Polli, JE [1 ]
机构
[1] Univ Maryland, Sch Pharm, Dept Pharmaceut Sci, Baltimore, MD 21201 USA
[2] Univ Maryland, Ctr Med Biotechnol, Inst Biotechnol, Baltimore, MD 21201 USA
关键词
nonionic surfactants; transporters; P-glycoprotein (P-gp); human intestinal peptide transporter (hPepT-1); monocarboxylic acid transporter (MCT);
D O I
10.1016/S0928-0987(02)00055-6
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The objectives of this study were (1) to investigate the transporter inhibition activity of three nonionic surfactants on P-glycoprotein, the human intestinal peptide transporter, and the monocarboxylic acid transporter in Caco-2 cell monolayers, and (2) to evaluate the role of membrane fluidity and protein kinase C in surfactant-induced transporter inhibition. All three surfactants inhibited P-glycoprotein (P-gp). Over a range from 0 to 1 mM, Tween 80 and Cremophor EL increased apical-to-basolateral permeability (AP-BL) and decreased basolateral-to-apical (BL-AP) permeability of the P-gp substrate rhodamine 123. Vitamin E TPGS's effect was equally large, but essentially only reduced the BL-AP permeability of rhodamine 123, and did so at a vitamin E TPGS concentration of only 0.025 mM. These P-gp inhibition effects would appear to be related to these excipients' modulation of membrane fluidity, where Tween 80 and Cremophor EL fluidized cell lipid bilayers, while vitamin E TPGS rigidized lipid bilayers. However, among the three surfactants, only Tween 80 inhibited the peptide transporter, as measured by glycyl sarcosine permeability. Likewise, only Cremophor EL inhibited the monocarboxylic acid transporter, as measured by benzoic acid permeability. Nevertheless, at least one of these three surfactants inhibited each P-gp, the human intestinal peptide transporter, and the monocarboxylic acid transporter. A common functional feature of these three surfactants was their ability to modulate fluidity, although results indicate that even strong membrane fluidity modulation alone was not sufficient to reduce transporter activity. N-octyl glucoside, a nonionic surfactant that did not modulate membrane fluidity, did not affect transporter functioning. Protein kinase C inhibitors failed to affect rhodamine 123 and glycyl sarcosine permeability, suggesting protein kinase C inhibition was not the mechanism of transporter inhibition. These results suggest that surfactants can inhibit multiple transporters but that changes in membrane fluidity may not be a generalized mechanism to reduce transporter activity. (C) 2002 Elsevier Science B V All rights reserved.
引用
收藏
页码:237 / 246
页数:10
相关论文
共 50 条
  • [31] UPTAKE AND TRANSPORT OF SPARFLOXACIN ACROSS CACO-2 CELL MONOLAYERS
    CORMET, E
    HUNEAU, JF
    CARBON, C
    RUBINSTEIN, E
    TOME, D
    FASEB JOURNAL, 1995, 9 (04): : A690 - A690
  • [32] Transepithelial transport of flavanone in intestinal Caco-2 cell monolayers
    Kobayashi, Shoko
    Konishi, Yutaka
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 368 (01) : 23 - 29
  • [33] Effect of Rhamnolipids on Permeability Across Caco-2 Cell Monolayers
    Wallace, Charity J.
    Medina, Scott H.
    ElSayed, Mohamed E. H.
    PHARMACEUTICAL RESEARCH, 2014, 31 (04) : 887 - 894
  • [34] Transport evaluation of alendronate across Caco-2 cell monolayers
    Karamustafa, F.
    Celebi, N.
    Degim, Z.
    Unal, N.
    PHARMAZIE, 2009, 64 (02): : 98 - 103
  • [35] Effect of Rhamnolipids on Permeability Across Caco-2 Cell Monolayers
    Charity J. Wallace
    Scott H. Medina
    Mohamed E. H. ElSayed
    Pharmaceutical Research, 2014, 31 : 887 - 894
  • [36] Effects of valerate on intestinal barrier function in cultured Caco-2 epithelial cell monolayers
    Guanzhen Gao
    Jingru Zhou
    Huiqin Wang
    Yanan Ding
    Jianwu Zhou
    Pik Han Chong
    Liying Zhu
    Lijing Ke
    Xin Wang
    Pingfan Rao
    Qiang Wang
    Longxin Zhang
    Molecular Biology Reports, 2022, 49 : 1817 - 1825
  • [37] Structural effects of phenolic acids on the transepithelial transport of fluorescein in Caco-2 cell monolayers
    Konishi, Y
    Kubo, K
    Shimizu, M
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2003, 67 (09) : 2014 - 2017
  • [38] Effects of valerate on intestinal barrier function in cultured Caco-2 epithelial cell monolayers
    Gao, Guanzhen
    Zhou, Jingru
    Wang, Huiqin
    Ding, Yanan
    Zhou, Jianwu
    Chong, Pik Han
    Zhu, Liying
    Ke, Lijing
    Wang, Xin
    Rao, Pingfan
    Wang, Qiang
    Zhang, Longxin
    MOLECULAR BIOLOGY REPORTS, 2022, 49 (03) : 1817 - 1825
  • [39] Effects of poly(ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers
    Hugger, ED
    Audus, KL
    Borchardt, RT
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2002, 91 (09) : 1980 - 1990
  • [40] Transepithelial transport of biperiden hydrochloride in Caco-2 cell monolayers
    Abalos, Ivana S.
    Rodriguez, Yanina I.
    Lozano, Veronica
    Cereseto, Marina
    Mussini, Maria V.
    Spinetto, Marta E.
    Chiale, Carlos
    Pesce, Guido
    ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY, 2012, 34 (02) : 223 - 227