Non-Hermitian Multiconfiguration Molecular Mechanics

被引:13
|
作者
Tishchenko, Oksana [1 ]
Truhlar, Donald G.
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
关键词
POTENTIAL-ENERGY SURFACES; TRANSITION-STATE THEORY; CHEMICAL-REACTIONS; DIRECT DYNAMICS; RATE CONSTANTS; FORCE-FIELDS; DENSITY; SIMULATION; ALGORITHM; KINETICS;
D O I
10.1021/ct900077g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a new version of the multiconfiguration molecular mechanics (MCMM) algorithm for fitting potential energy surfaces of complex reactive systems. The main improvement consists in allowing the valence bond configuration interaction matrix to be non-Hermitian, which broadens the range of geometries over which the potential energy surface can be fit accurately. A second improvement is that the new algorithm has simpler gradients and Hessians and executes faster. The performance of the new algorithm is evaluated using the example of two model reactions.
引用
收藏
页码:1454 / 1461
页数:8
相关论文
共 50 条
  • [21] Non-hermitian quantum mechanics in non-commutative space
    Giri, Pulak Ranjan
    Roy, P.
    EUROPEAN PHYSICAL JOURNAL C, 2009, 60 (01): : 157 - 161
  • [22] Non-hermitian quantum mechanics in non-commutative space
    Pulak Ranjan Giri
    P. Roy
    The European Physical Journal C, 2009, 60 : 157 - 161
  • [23] Non-Hermitian quantum mechanics in the context of the Lindblad equation
    Selsto, Solve
    XXVII INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC 2011), PTS 1-15, 2012, 388
  • [24] Gaussian eigenstate pinning in non-Hermitian quantum mechanics
    Zeng, Qi-Bo
    Lu, Rong
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [26] Non-Hermitian Hamiltonians with Real Spectrum in Quantum Mechanics
    J. da Providência
    N. Bebiano
    J. P. da Providência
    Brazilian Journal of Physics, 2011, 41 : 78 - 85
  • [27] Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty
    Jana, T. K.
    Roy, P.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [28] On Unitarity of the Scattering Operator in Non-Hermitian Quantum Mechanics
    Novikov, R. G.
    Taimanov, I. A.
    ANNALES HENRI POINCARE, 2024, 25 (08): : 3899 - 3909
  • [29] Non-Hermitian quantum mechanics and localization in physical systems
    Hatano, N
    QUANTUM COHERENCE AND DECOHERENCE, 1999, : 319 - 322
  • [30] Linking Scalar Elastodynamics and Non-Hermitian Quantum Mechanics
    Shmuel, Gal
    Moiseyev, Nimrod
    PHYSICAL REVIEW APPLIED, 2020, 13 (02):