CO2-MINERAL REACTION IN A NATURAL ANALOGUE FOR CO2 STORAGE-IMPLICATIONS FOR MODELING

被引:70
|
作者
Wilkinson, Mark [1 ]
Haszeldine, R. Stuart [1 ]
Fallick, Anthony E. [2 ]
Odling, Nicolas [1 ]
Stoker, Susan J. [3 ]
Gatliff, Robert W. [3 ]
机构
[1] Univ Edinburgh, Sch Geosci, Grant Inst, Edinburgh EH9 3JW, Midlothian, Scotland
[2] Scottish Univ Environm Res Ctr, E Kilbride G75 0QU, Lanark, Scotland
[3] British Geol Survey, Edinburgh EH17 7QS, Midlothian, Scotland
基金
英国自然环境研究理事会; 英国工程与自然科学研究理事会;
关键词
SOUTHERN NORTH-SEA; CARBON-DIOXIDE; GEOLOGICAL SEQUESTRATION; SEDIMENTARY BASINS; ROCK INTERACTIONS; AQUIFER DISPOSAL; CO2-H2O MIXTURES; GREENHOUSE GASES; SANDSTONE; SIMULATION;
D O I
10.2110/jsr.2009.052
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Geochemical models Of CO2 injection into reservoir sandstones often predict the growth of minerals that will permanently store the CO2 in solid form, and injection experiments record significant fluctuations in porewater chemistry on a short time scale. Yet the proportion Of CO2 reaction may be small, even over geological time scales. A southern North Sea (UK) gas accumulation with a high natural CO2 Content (c. 50%) forms a natural analogue to engineered storage, and provides a calibration point for geochemical models of CO2-rock reaction. In the analogue site, the carbonate mineral dawsonite has formed in only trace amounts (0.4 +/- 0.3% solid volume) despite exposure to. high levels Of CO2 for 50 Myr or more. It is calculated that only 2.4 (+/- 0.9)% of the CO2 present within the structure is currently locked up as dawsonite, and a similar quantity in solution in the porewaters. Comparison of stable o and C isotopes with a neighboring field with low CO2 content gas suggests that up to 0.7 (+/- 2)% solid volume dolomite cement is associated with the CO2 charge, equivalent to 0-25% of the total CO2. The remaining 70-95% of the CO2 is present as a free phase, after tens of millions of years. Consequently, geological storage of anthropogenic CO2 in reservoirs similar to the Rotliegend Group must rely on physical containment and not mineral sequestration. The Rotliegend Group is still an excellent candidate for a CO2 storage reservoir, though using physical trapping mechanisms and not chemical ones.
引用
收藏
页码:486 / 494
页数:9
相关论文
共 50 条
  • [11] Causes of underpressure in natural CO2 reservoirs and implications for geological storage
    Akhbari, Daria
    Hesse, Marc A.
    GEOLOGY, 2017, 45 (01) : 47 - 50
  • [12] Geochemical monitoring of an industrial analogue of CO2 storage
    Jeandel, E.
    Sarda, P.
    Battani, A.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2008, 72 (12) : A425 - A425
  • [13] Differential mineral diagenetic evolution of lacustrine shale: Implications for CO2 storage
    Wang, Liu
    Liu, Bo
    Bai, Longhui
    Ma, Lin
    Yu, Zhichao
    Huo, Qiuli
    Taylor, Kevin G.
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2024, 295
  • [14] The kinetics of reaction of a coke analogue in CO2 gas
    Jayasekara, Apsara S.
    Monaghan, Brian J.
    Longbottom, Raymond J.
    FUEL, 2015, 154 : 45 - 51
  • [15] On the estimation of CO2 capillary entry pressure: Implications on geological CO2 storage
    Zhou, Yingfang
    Hatzignatiou, Dimitrios G.
    Helland, Johan O.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 63 : 26 - 36
  • [16] CO2 Geological Storage - Geotechnical Implications
    Espinoza, D. N.
    Kim, S. H.
    Santamarina, J. C.
    KSCE JOURNAL OF CIVIL ENGINEERING, 2011, 15 (04) : 707 - 719
  • [17] CO2 geological storage — Geotechnical implications
    D. N. Espinoza
    S. H. Kim
    J. C. Santamarina
    KSCE Journal of Civil Engineering, 2011, 15 : 707 - 719
  • [18] Modeling CO2 wettability behavior at the interface of brine/CO2/mineral: Application to CO2 geo-sequestration
    Daryasafar, Amin
    Keykhosravi, Amin
    Shahbazi, Khalil
    JOURNAL OF CLEANER PRODUCTION, 2019, 239
  • [19] Turkish geothermal fields as natural analogues of CO2 storage sites: Gas geochemistry and implications for CO2 trapping mechanisms
    Gulec, Nilgun
    Hilton, David R.
    GEOTHERMICS, 2016, 64 : 96 - 110
  • [20] CO2 storage in cement and concrete by mineral carbonation
    Winnefeld, Frank
    Leemann, Andreas
    German, Alexander
    Lothenbach, Barbara
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2022, 38