An extension of the Eshelby conjecture to domains of general shape in anti-plane elasticity

被引:3
|
作者
Choi, Doosung [1 ]
Kim, Kyoungsun [2 ]
Lim, Mikyoung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Eshelby conjecture; Anti-plane elasticity; Faber polynomial; NEUTRAL COATED INCLUSIONS; ELLIPSOIDAL INCLUSION; ARBITRARY SHAPE; STRAIN-ENERGY; PLANE THEORY; REGULARITY; EQUATION; TENSOR; FIELD;
D O I
10.1016/j.jmaa.2020.124756
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
According to the Eshelby conjecture, an ellipse or ellipsoid is the only shape that induces an interior uniform strain under a uniform far-field loading. We extend the Eshelby conjecture to domains of general shape for anti-plane elasticity. Specifically, we show that for each positive integer N, an inclusion induces an interior uniform strain under a polynomial loading of degree N if and only if the exterior conformal map of the inclusion is a Laurent series of degree N. Furthermore, for the isotropic case, we characterize the shape of an inclusion by only using the first-degree polynomial loading and explicitly solve the interior potential of the inclusion in terms of the Grunsky coefficients. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Influence of hole shape and surface elasticity on anti-plane shear properties of porous structures with periodic holes
    Yang, Hai-Bing
    Dai, Ming
    Gao, Cun-Fa
    ACTA MECHANICA, 2017, 228 (07) : 2519 - 2531
  • [22] UNIQUENESS FOR ANTI-PLANE CRACK PROBLEMS IN MICROPOLAR THEORY OF ELASTICITY
    WACHECKASKOWRON, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1978, 26 (05): : 397 - 401
  • [23] Circular inclusions in anti-plane strain couple stress elasticity
    Lubarda, VA
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (15) : 3827 - 3851
  • [24] Influence of hole shape and surface elasticity on anti-plane shear properties of porous structures with periodic holes
    Hai-Bing Yang
    Ming Dai
    Cun-Fa Gao
    Acta Mechanica, 2017, 228 : 2519 - 2531
  • [25] Strain gradient solution for the Eshelby-type anti-plane strain inclusion problem
    Gao, X. -L.
    Ma, H. M.
    ACTA MECHANICA, 2012, 223 (05) : 1067 - 1080
  • [26] Weak solutions of the transmission problem in anti-plane Cosserat elasticity
    Atroshchenko, E.
    Potapenko, S.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (06): : 721 - 732
  • [27] Stress distribution around a crack in anti-plane micropolar elasticity
    Shmoylova, E.
    Potapenko, S.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2008, 13 (02) : 148 - 171
  • [28] Strain gradient solution for the Eshelby-type anti-plane strain inclusion problem
    X. -L. Gao
    H. M. Ma
    Acta Mechanica, 2012, 223 : 1067 - 1080
  • [29] Anti-plane crack solutions in higher-order elasticity
    Wu, M. S.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2017, 121 : 60 - 79
  • [30] Secondary motions associated with anti-plane shear in nonlinear isotropic elasticity
    Pucci, E.
    Saccomandi, G.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2013, 66 (02): : 221 - 239