Circumferences of regular claw-free graphs

被引:2
|
作者
Li, MingChu [1 ]
机构
[1] Chongqing Technol & Business Univ, Coll Sci, Chongqing 400067, Peoples R China
[2] Dalian Univ Technol, Sch Software, Dalian 116620, Liaoning, Peoples R China
关键词
circumference; longest cycle; claw-free graph; regularity; 3-connectedness;
D O I
10.1016/j.disc.2006.04.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A known result obtained independently by Fan and Jung is that every 3-connected k-regular graph on n vertices contains a cycle of length at least min{3k, n}. This raises the question of how much can be said about the circumferences of 3-connected k-regular claw-free graphs. In this paper, we show that every 3-connected k-regular claw-free graph on n vertices contains a cycle of length at least min{6k - 17, n}. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2682 / 2694
页数:13
相关论文
共 50 条
  • [31] CLAW-FREE GRAPHS ARE EDGE RECONSTRUCTIBLE
    ELLINGHAM, MN
    PYBER, L
    YU, XX
    JOURNAL OF GRAPH THEORY, 1988, 12 (03) : 445 - 451
  • [32] Counting claw-free cubic graphs
    Palmer, Edgar M.
    Read, Ronald C.
    Robinson, Robert W.
    2003, Society for Industrial and Applied Mathematics Publications (16)
  • [33] Disjoint cliques in claw-free graphs
    Su-yun Jiang
    Jin Yan
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 19 - 34
  • [34] On the Choosability of Claw-Free Perfect Graphs
    Sylvain Gravier
    Frédéric Maffray
    Lucas Pastor
    Graphs and Combinatorics, 2016, 32 : 2393 - 2413
  • [35] Strong Cliques in Claw-Free Graphs
    Debski, Michal
    Sleszynska-Nowak, Malgorzata
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2581 - 2593
  • [36] HAMILTONICITY IN PARTLY CLAW-FREE GRAPHS
    Abbas, Moncef
    Benmeziane, Zineb
    RAIRO-OPERATIONS RESEARCH, 2009, 43 (01) : 103 - 113
  • [37] Disjoint Cliques in Claw-free Graphs
    Su-yun JIANG
    Jin YAN
    Acta Mathematicae Applicatae Sinica, 2018, 34 (01) : 19 - 34
  • [38] Closure concepts for claw-free graphs
    Discrete Math, 1-3 (231-238):
  • [39] Strong Cliques in Claw-Free Graphs
    Michał Dębski
    Małgorzata Śleszyńska-Nowak
    Graphs and Combinatorics, 2021, 37 : 2581 - 2593
  • [40] Pancyclicity of claw-free hamiltonian graphs
    Trommel, H
    Veldman, HJ
    Verschut, A
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 781 - 789