Classifying and Characterizing Query Intent

被引:0
|
作者
Ashkan, Azin [1 ]
Clarke, Charles L. A. [1 ]
Agichtein, Engene [2 ]
Guo, Qi [2 ]
机构
[1] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
[2] Emory Univ, Atlanta, GA 30322 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Understanding the intent underlying users' queries may help personalize search results and improve user satisfaction. In this paper, we develop a methodology for using and clickthrough logs, query specific information, and the content of search engine result pages to study characterstics of query intents, specially commercial intents. The findings of our study suggest that ad clickthrough features, query features, and the content of search engine result pages are together effective in detecting query intent. We also study the effect of query type and the number of displayed ads on the average clickthrough rate. As a practical application of our work, we show that modeling query intent can improve the accuracy of predicting ad clickthrough for previously unseen queries.
引用
收藏
页码:578 / +
页数:2
相关论文
共 50 条
  • [41] SQuID: Semantic Similarity-Aware Query Intent Discovery
    Fariha, Anna
    Sarwar, Sheikh Muhammad
    Meliou, Alexandra
    SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 1745 - 1748
  • [42] Exploiting Intent Evolution in E-commercial Query Recommendation
    Wang, Yu
    Wang, Zhengyang
    Zhang, Hengrui
    Yin, Qingyu
    Tang, Xianfeng
    Wang, Yinghan
    Zhang, Danqing
    Cui, Limeng
    Cheng, Monica
    Yin, Bing
    Wang, Suhang
    Yu, Philip S.
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 5162 - 5173
  • [43] Dynamic Query Intent Mining from a Search Log Stream
    Qian, Yanan
    Sakai, Tetsuya
    Ye, Junting
    Zheng, Qinghua
    Li, Cong
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 1205 - 1208
  • [44] Intent-aware Temporal Query Modeling for Keyword Suggestion
    Johansson, Fredrik
    Fardig, Tobias
    Jethava, Vinay
    Marinov, Svetoslav
    PROCEEDINGS OF THE 5TH PH.D. WORKSHOP ON INFORMATION AND KNOWLEDGE, 2012, : 83 - 86
  • [45] A hybrid deep neural network model for query intent classification
    Xu, Bo
    Ma, Yunlong
    Lin, Hongfei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (06) : 6413 - 6423
  • [46] Query intent mining with multiple dimensions of web search data
    Di Jiang
    Kenneth Wai-Ting Leung
    Wilfred Ng
    World Wide Web, 2016, 19 : 475 - 497
  • [47] Understanding User Query Intent and Target Terms in Legal Domain
    Kumar, Sachin
    Politi, Regina
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS (NLDB 2019), 2019, 11608 : 41 - 53
  • [48] Dynamic Query Intent Prediction from a Search Log Stream
    Hanna, Wael K.
    Asem, Aziza Saad
    Senousy, M. B.
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2016, 6 (02) : 66 - 85
  • [49] Folksonomy Query Suggestion via Users' Search Intent Prediction
    Trabelsi, Chiraz
    Moulahi, Bilel
    Ben Yahia, Sadok
    FLEXIBLE QUERY ANSWERING SYSTEMS, 2011, 7022 : 388 - 399
  • [50] Estimating Ad Clickthrough Rate through Query Intent Analysis
    Ashkan, Azin
    Clarke, Charles L. A.
    Agichtein, Eugene
    Guo, Qi
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2009, : 222 - +