Classifying and Characterizing Query Intent

被引:0
|
作者
Ashkan, Azin [1 ]
Clarke, Charles L. A. [1 ]
Agichtein, Engene [2 ]
Guo, Qi [2 ]
机构
[1] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
[2] Emory Univ, Atlanta, GA 30322 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Understanding the intent underlying users' queries may help personalize search results and improve user satisfaction. In this paper, we develop a methodology for using and clickthrough logs, query specific information, and the content of search engine result pages to study characterstics of query intents, specially commercial intents. The findings of our study suggest that ad clickthrough features, query features, and the content of search engine result pages are together effective in detecting query intent. We also study the effect of query type and the number of displayed ads on the average clickthrough rate. As a practical application of our work, we show that modeling query intent can improve the accuracy of predicting ad clickthrough for previously unseen queries.
引用
收藏
页码:578 / +
页数:2
相关论文
共 50 条
  • [1] Understanding Temporal Query Intent
    Hasanuzzaman, Mohammed
    Saha, Sriparna
    Dias, Gael
    Ferrari, Stephane
    SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2015, : 823 - 826
  • [2] QUERY INTENT DETECTION BASED ON QUERY LOG MINING
    Zamora, Juan
    Mendoza, Marcelo
    Allende, Hector
    JOURNAL OF WEB ENGINEERING, 2014, 13 (1-2): : 24 - 52
  • [3] Reliability and Validity of Query Intent Assessments
    Verberne, Suzan
    van der Heijden, Maarten
    Hinne, Max
    Sappelli, Maya
    Koldijk, Saskia
    Hoenkamp, Eduard
    Kraaij, Wessel
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2013, 64 (11): : 2224 - 2237
  • [4] Query Expansion via Intent Predicting
    Huang, Qing
    Yang, Yangrui
    Wang, Xudong
    Wan, Hongyan
    Wang, Rui
    Wu, Guoqing
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2017, 27 (9-10) : 1591 - 1601
  • [5] Classifying and characterizing active materials
    Julia R. S. Bursten
    Synthese, 2021, 199 : 2007 - 2026
  • [6] Classifying and characterizing active materials
    Bursten, Julia R. S.
    SYNTHESE, 2021, 199 (1-2) : 2007 - 2026
  • [7] Characterizing and classifying Desktop Grid
    Choi, SungJin
    Kim, HongSoo
    Byun, EunJoung
    Baik, MaengSoon
    Kim, SungSuk
    Park, ChanYeol
    Hwang, ChongSun
    CCGRID 2007: SEVENTH IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID, 2007, : 743 - 748
  • [8] Intent Identification by Semantically Analyzing the Search Query
    Sultana, Tangina
    Mandal, Ashis Kumar
    Saha, Hasi
    Sultan, Md. Nahid
    Hossain, Md. Delowar
    MODELLING, 2024, 5 (01): : 292 - 314
  • [9] Query Understanding via Intent Description Generation
    Zhang, Ruqing
    Guo, Jiafeng
    Fan, Yixing
    Lan, Yanyan
    Cheng, Xueqi
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1823 - 1832
  • [10] A dataspace prefetching method based on query intent
    Zhu G.
    Zhou L.
    Wang N.
    Liu D.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2016, 37 (02): : 236 - 241