On the stochastic interpretation of gradient-dependent constitutive equations

被引:15
|
作者
Frantziskonis, G
Aifantis, EC [1 ]
机构
[1] Aristotle Univ Thessaloniki, Polytech Sch, LMM, GR-54006 Thessaloniki, Greece
[2] Univ Arizona, Dept Civil Engn & Engn Mech, Tucson, AZ 85721 USA
[3] Michigan Technol Univ, Ctr Mech Mat Instabil & Mfg Proc, Houghton, MI 49931 USA
基金
美国国家科学基金会;
关键词
constitutive relations; gradients; stochastic; heterogeneity;
D O I
10.1016/S0997-7538(01)01201-3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper elaborates on the statistical interpretation of a class of gradient models by resorting to both microscopic and macroscopic considerations. The microscopic stochastic representation of stress and strain fields reflects the heterogeneity inherently present in engineering materials at small scales. A physical argument is advanced to conjecture that stress shows small fluctuations and strong spatial correlations when compared to those of strain; then, a series expansion in the respective constitutive equations renders unimportant stress gradient terms, in contrast to strain gradient terms, which should be retained. Each higher-order strain gradient term is given a physically clear interpretation. The formulation also allows for the underlying microstrain field to be statistically non-stationary, e.g., of fractal character. The paper concludes with a comparison between surface effects predicted by gradient and stochastic formulations. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:589 / 596
页数:8
相关论文
共 50 条
  • [31] Overcoming the Curse of Dimensionality in the Numerical Approximation of Parabolic Partial Differential Equations with Gradient-Dependent Nonlinearities
    Hutzenthaler, Martin
    Jentzen, Arnulf
    Kruse, Thomas
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (04) : 905 - 966
  • [32] Anisotropic elliptic equations with gradient-dependent lower order terms and L1 data
    Brandolini, Barbara
    Cirstea, Florica C.
    MATHEMATICS IN ENGINEERING, 2023, 5 (04): : 1 - 33
  • [33] DISPERSIVE PROPERTIES OF GRADIENT-DEPENDENT AND RATE-DEPENDENT MEDIA
    SLUYS, LJ
    DEBORST, R
    MECHANICS OF MATERIALS, 1994, 18 (02) : 131 - 149
  • [34] SODIUM GRADIENT-DEPENDENT AND SODIUM PLUS POTASSIUM GRADIENT-DEPENDENT L-GLUTAMATE UPTAKE IN RENAL BASOLATERAL MEMBRANE-VESICLES
    SACKTOR, B
    ROSENBLOOM, IL
    LIANG, CT
    CHENG, L
    JOURNAL OF MEMBRANE BIOLOGY, 1981, 60 (01): : 63 - 71
  • [35] Evolution of layered structures in a gradient-dependent viscoplastic material
    Faciu, C.
    Molinari, A.
    1996, Editions de Physique, Les Ulis, France (06):
  • [36] Nonlocal gradient-dependent modeling of plasticity with anisotropic hardening
    Voyiadjis, George Z.
    Pekmezi, Gerald
    Deliktas, Babur
    INTERNATIONAL JOURNAL OF PLASTICITY, 2010, 26 (09) : 1335 - 1356
  • [37] FE approach for thermodynamically consistent gradient-dependent plasticity
    Vrech, S. M.
    Etse, G.
    LATIN AMERICAN APPLIED RESEARCH, 2007, 37 (02) : 127 - 132
  • [38] Nonlocal gradient-dependent thermodynamics for Modeling scale-dependent plasticity
    Voyiadjis, George Z.
    Abu Al-Rub, Rashid K.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2007, 5 (3-4) : 295 - 323
  • [39] A multiscale gradient-dependent plasticity model for size effects
    Lyu, Hao
    Taheri-Nassaj, Nasrin
    Zbib, Hussein M.
    PHILOSOPHICAL MAGAZINE, 2016, 96 (18) : 1883 - 1908
  • [40] Shear band spacing in gradient-dependent thermoviscoplastic materials
    R. C. Batra
    L. Chen
    Computational Mechanics, 1999, 23 : 8 - 19