A finite difference method for a conservative Allen-Cahn equation on non-flat surfaces

被引:33
|
作者
Kim, Junseok [1 ]
Jeong, Darae [1 ]
Yang, Seong-Deog [1 ]
Choi, Yongho [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Conservative Allen-Cahn equation; Narrow band domain; Closest point method; Space-time-dependent Lagrange multiplier; PHASE-FIELD MODEL; IMAGE SEGMENTATION; MOTION;
D O I
10.1016/j.jcp.2016.12.060
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an efficient numerical scheme for the conservative Allen-Cahn (CAC) equation on various surfaces embedded in a narrow band domain in the three-dimensional Space. We apply a quasi-Neumann boundary condition on the narrow band domain boundary using the closest point method. This boundary treatment allows us to use the standard Cartesian Laplacian operator instead of the Laplace-Beltrami operator. We apply a hybrid operator splitting method for solving the CAC equation. First, we use an explicit Euler method to solve the diffusion term. Second, we solve the nonlinear term by using a closed form solution. Third, we apply a space-time-dependent Lagrange multiplier to conserve the total quantity. The overall scheme is explicit in time and does not need iterative steps; therefore, it is fast. A series of numerical experiments demonstrate the accuracy and efficiency of the proposed hybrid scheme. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:170 / 181
页数:12
相关论文
共 50 条
  • [41] Periodic solutions for the Allen-Cahn equation
    Huang, Rui
    Huang, Haochuan
    Ji, Shanming
    Yin, Jingxue
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [42] Periodic solutions for the Allen-Cahn equation
    Rui Huang
    Haochuan Huang
    Shanming Ji
    Jingxue Yin
    Advances in Difference Equations, 2015
  • [43] The Allen-Cahn equation on closed manifolds
    Gaspar, Pedro
    Guaraco, Marco A. M.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
  • [44] Multiphase flows of N immiscible incompressible fluids: Conservative Allen-Cahn equation and lattice Boltzmann equation method
    Zheng, Lin
    Zheng, Song
    Zhai, Qinglan
    PHYSICAL REVIEW E, 2020, 101 (01)
  • [45] Stochastic Allen-Cahn equation with mobility
    Bertini, Lorenzo
    Butta, Paolo
    Pisante, Adriano
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (05):
  • [46] Bifurcation of solutions to the Allen-Cahn equation
    Smith, Graham
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 : 667 - 687
  • [47] Stochastic perturbations of the Allen-Cahn equation
    Shardlow, Tony
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2000,
  • [48] Solutions of an Allen-Cahn model equation
    Rabinowitz, PH
    Stredulinsky, E
    NONLINEAR EQUATIONS: METHODS, MODELS AND APPLICATIONS, 2003, 54 : 245 - 256
  • [49] On the entropy of parabolic Allen-Cahn equation
    Sun, Ao
    INTERFACES AND FREE BOUNDARIES, 2021, 23 (03) : 421 - 432
  • [50] Allen-Cahn equation with strong irreversibility
    Akagi, Goro
    Efendiev, Messoud
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (04) : 707 - 755