Microscopic theory of plasmon-enabled resonant terahertz detection in bilayer graphene
被引:1
|
作者:
Tomadin, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dipartimento Fis, Largo Bruno Pontecorvo 3, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Fis, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
Tomadin, Andrea
[1
]
Carrega, Matteo
论文数: 0引用数: 0
h-index: 0
机构:
CNR SPIN, Via Dodecaneso 33, I-16146 Genoa, ItalyUniv Pisa, Dipartimento Fis, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
Carrega, Matteo
[2
]
Polini, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dipartimento Fis, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England
Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, ItalyUniv Pisa, Dipartimento Fis, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
Polini, Marco
[1
,3
,4
]
机构:
[1] Univ Pisa, Dipartimento Fis, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
[2] CNR SPIN, Via Dodecaneso 33, I-16146 Genoa, Italy
[3] Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England
[4] Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, Italy
Graphene - Two dimensional electron gas - Quantum theory - Photodetectors - Plasma waves - Dispersion (waves) - Van der Waals forces - Capacitance;
D O I:
10.1103/PhysRevB.103.085426
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
The electron gas hosted in a two-dimensional solid-state matrix, such as a quantum well or a two-dimensional van der Waals heterostructure, supports the propagation of plasma waves. Nonlinear interactions between plasma waves, due to charge conservation and current convection, generate a constant density gradient which can be detected as a DC potential signal at the boundaries of the system. This phenomenon is at the heart of a plasma-wave photodetection scheme, which was first introduced by Dyakonov and Shur for electronic systems with a parabolic dispersion and then extended to the massless Dirac fermions in graphene. In this work, we develop the theory of plasma-wave photodetection in bilayer graphene, which has the peculiarity that the dispersion relation depends locally and dynamically on the intensity of the plasma wave. In our analysis, we show how quantum capacitance effects, arising from the local fluctuations of the electronic dispersion, modify the intensity of the photodetection signal. An external electrical bias, e.g., induced by top and bottom gates, can be used to control the strength of the quantum capacitance corrections, and thus the photoresponse.