Design of dendritic core carbazole-based hole transporting materials for efficient and stable hybrid perovskite solar cells

被引:17
|
作者
Thanh-Tuan Bui [1 ]
Ulfa, Maria [2 ]
Maschietto, Federica [2 ]
Ottochian, Alistar [2 ]
Mai-Phuong Nghiem [3 ]
Ciofini, Ilaria [2 ]
Goubard, Fabrice [1 ]
Pauporte, Thierry [2 ]
机构
[1] Univ Cergy Pontoise, Lab Physicochim Polymeres & Interfaces, 5 Mail Gay Lussac, F-95000 Neuville Sur Oise, France
[2] PSL Res Univ, Chim ParisTech, CNRS, IRCP, 11 Rue P&M Curie, F-75005 Paris, France
[3] Univ Cergy Pontoise, Plateforme Microscopies & Anal, Federat Inst Mat iMAT, Rue Descartes, F-95000 Neuville Sur Oise, France
基金
欧洲研究理事会;
关键词
Molecular design; Carbazole; Hole transporting material; Perovskite solar cell; Stability; MOLECULAR GLASSES; ELECTRON-TRANSPORT; RECOMBINATION; PERFORMANCE; TRANSISTORS; POLYMERS; CONTACT; GROWTH;
D O I
10.1016/j.orgel.2018.05.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Designing organic molecules efficient for charge extraction and transport when integrated in optoelectronic devices remains a great challenge for many advanced applications. In perovskite solar cells (PSCs), the hole extraction/transport and the device stability are strongly dependent on the molecular structure of the hole transporting material (HTM). Herein we have engineered a dendritic core carbazole based HTM (named B186), which combines the advantages of both small molecules and polymeric materials. The material can be easily prepared in a short synthetic procedure from largely available commercial products. We have investigated in-depth the relationship between the chemical structure of the HTM and both the photovoltaic efficiency and the device stability. It has been shown that the dendritic core is a promising approach leading to both enhanced device performance and stability. The new HTM has been proved to act as a good barrier and protect satisfactorily the perovskite surface. The power conversion efficiencies (PCE) increase from 11.5% for the simple model compound to a promising 14.6%. Additionally, the normalized PCE of B186-based PSC decreased by only 5% after more than three weeks of storage under ambient conditions meanwhile the cell using the most popular HTM (Spiro-OMeTAD) dropped off by more than 40%. The presented results demonstrate that introducing dendritic concept is a simple strategy to design HTM for efficient and stable PSC.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 50 条
  • [41] Carbazole-based hole-transporting materials for electroluminescent devices
    Zhang, Q
    Hu, YF
    Cheng, YX
    Su, GP
    Ma, DG
    Wang, LX
    Jing, XB
    Wang, FS
    SYNTHETIC METALS, 2003, 137 (1-3) : 1111 - 1112
  • [42] Carbazole-Based Hole-Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells and Perovskite Solar Cells
    Xu, Bo
    Sheibani, Esmaeil
    Liu, Peng
    Zhang, Jinbao
    Tian, Haining
    Vlachopoulos, Nick
    Boschloo, Gerrit
    Kloo, Lars
    Hagfeldt, Anders
    Sun, Licheng
    ADVANCED MATERIALS, 2014, 26 (38) : 6629 - 6634
  • [43] Molecular Engineering of Polymeric Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells
    Li, Yan
    Duan, Shichun
    Zhang, Luozheng
    Zhang, Yong
    Tang, Zikang
    Xu, Baomin
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (04) : 3526 - 3534
  • [44] Dopant-Free Hole-Transporting Materials for Stable and Efficient Perovskite Solar Cells
    Paek, Sanghyun
    Qin, Peng
    Lee, Yonghui
    Cho, Kyung Taek
    Gao, Peng
    Grancini, Giulia
    Oveisi, Emad
    Gratia, Paul
    Rakstys, Kasparas
    Al-Muhtaseb, Shaheen A.
    Ludwig, Christian
    Ko, Jaejung
    Nazeeruddin, Mohammad Khaja
    ADVANCED MATERIALS, 2017, 29 (35)
  • [45] Pyrene-Cored Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells
    Shao, Jiang-Yang
    Zhong, Yu-Wu
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2021, 94 (02) : 632 - 640
  • [46] Thermally stable efficient hole transporting materials based on carbazole and triphenylamine core for red phosphorescent OLEDs
    Braveenth, Ramanaskanda
    Bae, Hyeong Woo
    Ko, Ik Jang
    Qiong, Wu
    Quynh Pham Bao Nguyen
    Jayashantha, Pothupitiya Gamage Sudesh
    Kwon, Jang Hyuk
    Chai, Kyu Yun
    ORGANIC ELECTRONICS, 2017, 51 : 463 - 470
  • [47] A star-shaped carbazole-based hole-transporting material with triphenylamine side arms for perovskite solar cells
    Liu, Xuepeng
    Ding, Xihong
    Ren, Yingke
    Yang, Yi
    Ding, Yong
    Liu, Xiaolong
    Alsaedi, Ahmed
    Hayat, Tasawar
    Yao, Jianxi
    Dai, Songyuan
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (47) : 12912 - 12918
  • [48] Carbazole-based D-A type hole transport materials to enhance the performance of perovskite solar cells
    Liu, Haitao
    He, Bizu
    Lu, Huiqiang
    Tang, Rong
    Wu, Fei
    Zhong, Cheng
    Li, Shufang
    Wang, Jinliang
    Zhu, Linna
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (02): : 371 - 376
  • [49] Carbazole-Terminated Isomeric Hole-Transporting Materials for Perovskite Solar Cells
    Rakstys, Kasparas
    Paek, Sanghyun
    Drevilkauskaite, Aida
    Kanda, Hiroyuki
    Daskeviciute, Sarune
    Shibayama, Naoyuki
    Daskeviciene, Maryte
    Gruodis, Alytis
    Kamarauskas, Egidijus
    Jankauskas, Vygintas
    Getautis, Vytautas
    Nazeeruddin, Mohammad Khaja
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (17) : 19710 - 19717
  • [50] Molecular Doping for Hole Transporting Materials in Hybrid Perovskite Solar Cells
    Trifiletti, Vanira
    Degousee, Thibault
    Manfredi, Norberto
    Fenwick, Oliver
    Colella, Silvia
    Rizzo, Aurora
    METALS, 2020, 10 (01)