A High-Performance Sintered Iron Electrode for Rechargeable Alkaline Batteries to Enable Large-Scale Energy Storage

被引:45
|
作者
Yang, Chenguang [1 ]
Manohar, Aswin K. [1 ]
Narayanan, S. R. [1 ]
机构
[1] Univ Southern Calif, Loker Hydrocarbon Res Inst, Dept Chem, Los Angeles, CA 90089 USA
关键词
SULFIDE ADDITIVES; OXIDE ELECTRODES; DISCHARGE; KINETICS;
D O I
10.1149/2.1161702jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Iron-based alkaline rechargeable batteries such as iron-air and nickel-iron batteries are particularly attractive for large-scale energy storage because these batteries can be relatively inexpensive, environment-friendly, and also safe. Therefore, our study has focused on achieving the essential electrical performance and cycling properties needed for the widespread use of iron-based alkaline batteries in stationary and distributed energy storage applications. We have demonstrated for the first time, an advanced sintered iron electrode capable of 3500 cycles of repeated charge and discharge at the 1-hour rate and 100% depth of discharge in each cycle, and an average Coulombic efficiency of over 97%. Such a robust and efficient rechargeable iron electrode is also capable of continuous discharge at rates as high as 3C with no noticeable loss in utilization. We have shown that the porosity, pore size and thickness of the sintered electrode can be selected rationally to optimize specific capacity, rate capability and robustness. These advances in the electrical performance and durability of the iron electrode enables iron-based alkaline batteries to be a viable technology solution for meeting the dire need for large-scale electrical energy storage. (C) The Author(s) 2017. Published by ECS.
引用
收藏
页码:A418 / A429
页数:12
相关论文
共 50 条
  • [31] Large-Scale Integrated Photonics for High-Performance Interconnects
    Beausoleil, Raymond G.
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2011, 7 (02)
  • [32] Large-Scale Integrated Photonics for High-Performance Interconnects
    Beausoleil, R. G.
    2011 IEEE PHOTONICS CONFERENCE (PHO), 2011, : 326 - 327
  • [33] Large-Scale Integrated Photonics for High-Performance Interconnects
    Beausoleil, R. G.
    2012 IEEE PHOTONICS CONFERENCE (IPC), 2012, : 274 - 275
  • [34] A High Efficiency Iron-Chloride Redox Flow Battery for Large-Scale Energy Storage
    Manohar, Aswin K.
    Kim, Kyu Min
    Plichta, Edward
    Hendrickson, Mary
    Rawlings, Sabrina
    Narayanan, S. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (01) : A5118 - A5125
  • [35] Natural iron ores for large-scale thermochemical hydrogen and energy storage
    Bock, Sebastian
    Pauritsch, Magdalena
    Lux, Susanne
    Hacker, Viktor
    ENERGY CONVERSION AND MANAGEMENT, 2022, 267
  • [36] Alkaline Benzoquinone Aqueous Flow Battery for Large-Scale Storage of Electrical Energy
    Yang, Zhengjin
    Tong, Liuchuan
    Tabor, Daniel P.
    Beh, Eugene S.
    Goulet, Marc-Antoni
    De Porcellinis, Diana
    Aspuru-Guzik, Alan
    Gordon, Roy G.
    Aziz, Michael J.
    ADVANCED ENERGY MATERIALS, 2018, 8 (08)
  • [37] Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries
    Yu, Tingting
    Li, Qiang
    Zhao, Xiangyu
    Xia, Hui
    Ma, Liqun
    Wang, Jinlan
    Meng, Ying Shirley
    Shen, Xiaodong
    ACS ENERGY LETTERS, 2017, 2 (10): : 2341 - 2348
  • [38] Redox-Targeting-Based Flow Batteries for Large-Scale Energy Storage
    Yan, Ruiting
    Wang, Qing
    ADVANCED MATERIALS, 2018, 30 (47)
  • [39] Potassium-Ion Batteries: Key to Future Large-Scale Energy Storage?
    Anoopkumar, V
    John, Bibin
    Mercy, T. D.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (10): : 9478 - 9492
  • [40] A high-performance Te@CMK-3 composite negative electrode for Na rechargeable batteries
    Koketsu, Toshinari
    Wu, Chao
    Huang, Yunhui
    Strasser, Peter
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2018, 48 (11) : 1265 - 1271