A study for obtaining more compacton solutions of the modified form of fifth-order Korteweg-de Vries-like equations

被引:0
|
作者
Inc, M [1 ]
机构
[1] Firat Univ, Dept Math, TR-23119 Elazig, Turkey
关键词
modified form of fifth-order KdV-like equations; compacton; periodic wave solution;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper we investigate exact solutions of a modified form of fifth-order Korteweg-de Vries-like equations by using two direct methods. Thus we get new compacton solutions having infinite wings or tails. In addition, new periodic and singular periodic wave solutions are obtained.
引用
收藏
页码:359 / 367
页数:9
相关论文
共 50 条
  • [1] Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations
    Cooper, F
    Hyman, JM
    Khare, A
    [J]. PHYSICAL REVIEW E, 2001, 64 (02): : 13
  • [2] Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations
    Darvishi, M. T.
    Khani, F.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2484 - 2490
  • [3] Symmetry Analysis and PT-Symmetric Extension of the Fifth-Order Korteweg-de Vries-Like Equation
    Wang, Gangwei
    Shen, Bo
    He, Mengyue
    Guan, Fei
    Zhang, Lihua
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [4] ENERGY SOLUTIONS FOR THE FIFTH-ORDER MODIFIED KORTEWEG DE-VRIES EQUATIONS
    Kwak, Chulkwang
    Lee, Kiyeon
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (11) : 3302 - 3345
  • [5] Asymptotics of solutions to a fifth-order modified Korteweg-de Vries equation in the quarter plane
    Liu, Nan
    Guo, Boling
    [J]. ANALYSIS AND APPLICATIONS, 2021, 19 (04) : 575 - 620
  • [6] Fifth-order complex Korteweg-de Vries-type equations
    Khanal, Netra
    Wu, Jiahong
    Yuan, Juan-Ming
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (20)
  • [7] On the controllability of the fifth-order Korteweg-de Vries equation
    Glass, O.
    Guerrero, S.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2181 - 2209
  • [8] Some notes on numerical waves of fifth-order Korteweg-de Vries equations
    Lee, C. T.
    Liu, M. L.
    Lin, J. E.
    Lee, C. C.
    [J]. PHYSICS ESSAYS, 2019, 32 (01) : 127 - 139
  • [9] Novel Analysis of Fractional-Order Fifth-Order Korteweg-de Vries Equations
    Khoshaim, Ahmed B.
    Naeem, Muhammad
    Akgul, Ali
    Ghanmi, Nejib
    Zaland, Shamsullah
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [10] Integrability and exact solutions of deformed fifth-order Korteweg-de Vries equation
    Kumar, S. Suresh
    Sahadevan, R.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):