Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations

被引:25
|
作者
Darvishi, M. T. [1 ]
Khani, F. [2 ]
机构
[1] Razi Univ, Dept Math, Kermanshah 67149, Iran
[2] Bakhtar Inst Higher Educ, Dept Math, Ilam, Iran
关键词
VARIATIONAL-ITERATION METHOD; SOLITARY WAVE SOLUTIONS; APPROXIMATE SOLUTION; KDV EQUATIONS; BURGERS; TRANSFORMATION; SIMULATION;
D O I
10.1016/j.chaos.2007.07.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by means of variational iteration method numerical and explicit Solutions are computed for sonic fifth-order Korteweg-de Vries equations, without any linearization or weak nonlinearity assumptions. These equations are the Kawahara equation, Lax's fifth-order KdV equation and Sawada-Kotera equation. Comparison with Adomian decomposition method reveals that the variational iteration method is easier to be implemented. We conclude that the method is a promising method to various kinds of fifth-order Korteweg-de Vries equations. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2484 / 2490
页数:7
相关论文
共 50 条
  • [1] Some notes on numerical waves of fifth-order Korteweg-de Vries equations
    Lee, C. T.
    Liu, M. L.
    Lin, J. E.
    Lee, C. C.
    [J]. PHYSICS ESSAYS, 2019, 32 (01) : 127 - 139
  • [2] Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations
    Cooper, F
    Hyman, JM
    Khare, A
    [J]. PHYSICAL REVIEW E, 2001, 64 (02): : 13
  • [3] A meshless numerical solution of the family of generalized fifth-order Korteweg-de Vries equations
    Mohyud-Din, Syed Tauseef
    Negandary, Elham
    Usman, Muhammad
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2012, 22 (05) : 641 - 658
  • [4] Fifth-order complex Korteweg-de Vries-type equations
    Khanal, Netra
    Wu, Jiahong
    Yuan, Juan-Ming
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (20)
  • [5] On the controllability of the fifth-order Korteweg-de Vries equation
    Glass, O.
    Guerrero, S.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2181 - 2209
  • [6] Novel Analysis of Fractional-Order Fifth-Order Korteweg-de Vries Equations
    Khoshaim, Ahmed B.
    Naeem, Muhammad
    Akgul, Ali
    Ghanmi, Nejib
    Zaland, Shamsullah
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [7] Integrability and exact solutions of deformed fifth-order Korteweg-de Vries equation
    Kumar, S. Suresh
    Sahadevan, R.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [8] A Korteweg-de Vries type of fifth-order equations on a finite domain with point dissipation
    Gao, Guangyue
    Sun, Shu-Ming
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (01) : 200 - 239
  • [9] Evolution of radiating solitons described by the fifth-order Korteweg-de Vries type equations
    Karpman, VI
    [J]. PHYSICS LETTERS A, 1998, 244 (05) : 394 - 396
  • [10] ENERGY SOLUTIONS FOR THE FIFTH-ORDER MODIFIED KORTEWEG DE-VRIES EQUATIONS
    Kwak, Chulkwang
    Lee, Kiyeon
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (11) : 3302 - 3345