A Korteweg-de Vries type of fifth-order equations on a finite domain with point dissipation

被引:4
|
作者
Gao, Guangyue [1 ]
Sun, Shu-Ming [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
A KdV type of equations; Point dissipation; Closed loop control; DEVRIES EQUATION; KAWAHARA EQUATION; PERIODIC DOMAIN; STABILIZATION; CONTROLLABILITY; STABILIZABILITY; WAVES; SOLITARY; DECAY;
D O I
10.1016/j.jmaa.2016.01.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper discusses initial value problem of a Korteweg-de Vries type of fifth-order equation w(t) + w(xxx) - w(xxxxx) - Sigma(n)(j=1) a(j)w(j)w(x) = 0, w(x, 0) = w(0)(x) posed on a periodic domain x is an element of [0, 2 pi] with periodic boundary conditions w(ix) (0, t) = w(ix) (2 pi, t), i = 0,2,3,4 and an L-2-stabilizing feedback control law w(x) (2 pi, t) = alpha w(x)(0,t) + (1 - alpha)w(xxx) (0, t) where n is a fixed positive integer, a(j), j = 1,2,... , n, alpha are real constants, and vertical bar alpha vertical bar < 1. It is shown that for w(0)(x) is an element of H-alpha(1) (0, 2 pi) with the boundary conditions described above, the problem is locally well-posed for w is an element of C([0,7]; H-alpha(1) (0,2 pi)) with a conserved volume of w, [w] = integral(2 pi)(0) w(x, t)dx. Moreover, the solution with small initial condition exists globally and approaches to [w(0)(x)]/(2 pi) as t -> +infinity. Published by Elsevier Inc.
引用
收藏
页码:200 / 239
页数:40
相关论文
共 50 条
  • [1] Fifth-order complex Korteweg-de Vries-type equations
    Khanal, Netra
    Wu, Jiahong
    Yuan, Juan-Ming
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (20)
  • [2] Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations
    Darvishi, M. T.
    Khani, F.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2484 - 2490
  • [3] Evolution of radiating solitons described by the fifth-order Korteweg-de Vries type equations
    Karpman, VI
    [J]. PHYSICS LETTERS A, 1998, 244 (05) : 394 - 396
  • [4] On the controllability of the fifth-order Korteweg-de Vries equation
    Glass, O.
    Guerrero, S.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2181 - 2209
  • [5] Some notes on numerical waves of fifth-order Korteweg-de Vries equations
    Lee, C. T.
    Liu, M. L.
    Lin, J. E.
    Lee, C. C.
    [J]. PHYSICS ESSAYS, 2019, 32 (01) : 127 - 139
  • [6] Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations
    Cooper, F
    Hyman, JM
    Khare, A
    [J]. PHYSICAL REVIEW E, 2001, 64 (02): : 13
  • [7] Novel Analysis of Fractional-Order Fifth-Order Korteweg-de Vries Equations
    Khoshaim, Ahmed B.
    Naeem, Muhammad
    Akgul, Ali
    Ghanmi, Nejib
    Zaland, Shamsullah
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [8] A meshless numerical solution of the family of generalized fifth-order Korteweg-de Vries equations
    Mohyud-Din, Syed Tauseef
    Negandary, Elham
    Usman, Muhammad
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2012, 22 (05) : 641 - 658
  • [9] OPTIMALLY CONVERGENT HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR FIFTH-ORDER KORTEWEG-DE VRIES TYPE EQUATIONS
    Chen, Yanlai
    Dong, Bo
    Jiang, Jiahua
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 52 (06): : 2283 - 2306
  • [10] ON THE DIFFERENTIAL OPERATORS OF THE GENERALIZED FIFTH-ORDER KORTEWEG-DE VRIES EQUATION
    Lee, Chun-Te
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2010, 17 (01) : 123 - 136