An adaptive genetic algorithm for selection of blood-based biomarkers for prediction of Alzheimer's disease progression

被引:25
|
作者
Vandewater, Luke [1 ]
Brusic, Vladimir [2 ,3 ]
Wilson, William [1 ]
Macaulay, Lance [4 ]
Zhang, Ping [1 ,5 ]
机构
[1] CSIRO, Digital Prod Flagship, Clayton, Vic, Australia
[2] Nazarbayev Univ, Sch Med, Astana, Kazakhstan
[3] Nazarbayev Univ, Bioinformat Ctr, Astana, Kazakhstan
[4] CSIRO, Food & Nutr Flagship, Clayton, Vic, Australia
[5] Griffith Univ, Menzies Hlth Inst Queensland, Nathan, Qld 4111, Australia
来源
BMC BIOINFORMATICS | 2015年 / 16卷
基金
英国医学研究理事会;
关键词
MILD COGNITIVE IMPAIRMENT; LOGISTIC-REGRESSION; VARIABLE SELECTION; DIAGNOSIS;
D O I
10.1186/1471-2105-16-S18-S1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Alzheimer's disease is a multifactorial disorder that may be diagnosed earlier using a combination of tests rather than any single test. Search algorithms and optimization techniques in combination with model evaluation techniques have been used previously to perform the selection of suitable feature sets. Previously we successfully applied GA with LR to neuropsychological data contained within the The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, to select cognitive tests for prediction of progression of AD. This research addresses an Adaptive Genetic Algorithm (AGA) in combination with LR for identifying the best biomarker combination for prediction of the progression to AD. Results: The model has been explored in terms of parameter optimization to predict conversion from healthy stage to AD with high accuracy. Several feature sets were selected - the resulting prediction moddels showed higher area under the ROC values (0.83-0.89). The results has shown consistency with some of the medical research reported in literature. Conclusion: The AGA has proven useful in selecting the best combination of biomarkers for prediction of AD progression. The algorithm presented here is generic and can be extended to other data sets generated in projects that seek to identify combination of biomarkers or other features that are predictive of disease onset or progression.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Blood-based biomarkers in Alzheimer's disease: a mini-review
    Padala, Sanjana P.
    Newhouse, Paul A.
    METABOLIC BRAIN DISEASE, 2023, 38 (01) : 185 - 193
  • [32] Recommendations for clinical implementation of blood-based biomarkers for Alzheimer's disease
    Mielke, Michelle M.
    Anderson, Matthew
    Ashford, J. Wesson
    Jeromin, Andreas
    Lin, Pei-Jung
    Rosen, Allyson
    Tyrone, Jamie
    Vandevrede, Lawren
    Willis, Deanna R.
    Hansson, Oskar
    Khachaturian, Ara S.
    Schindler, Suzanne E.
    Weiss, Joan
    Batrla, Richard
    Bozeat, Sasha
    Dwyer, John R.
    Holzapfel, Drew
    Jones, Daryl Rhys
    Murray, James F.
    Partrick, Katherine A.
    Scholler, Emily
    Vradenburg, George
    Young, Dylan
    Braunstein, Joel B.
    Burnham, Samantha C.
    de Oliveira, Fabricio Ferreira
    Hu, Yan Helen
    Mattke, Soeren
    Merali, Zul
    Monane, Mark
    Sabbagh, Marwan Noel
    Shobin, Eli
    Weiner, Michael
    Udeh-Momoh, Chinedu T.
    ALZHEIMERS & DEMENTIA, 2024, 20 (11) : 8216 - 8224
  • [33] Blood-based biomarkers in Alzheimer's disease: Future directions for implementation
    Suridjan, Ivonne
    van der Flier, Wiesje M.
    Monsch, Andreas U.
    Burnie, Nerida
    Baldor, Robert
    Sabbagh, Marwan
    Vilaseca, Josep
    Cai, Dongming
    Carboni, Margherita
    Lah, James J.
    ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING, 2023, 15 (04)
  • [34] Alzheimer's disease and blood-based biomarkers - potential contexts of use
    Zverova, Martina
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2018, 14 : 1877 - 1882
  • [35] Blood-based biomarkers in Alzheimer’s disease: a mini-review
    Sanjana P. Padala
    Paul A. Newhouse
    Metabolic Brain Disease, 2023, 38 : 185 - 193
  • [36] Blood-based Biomarkers of Alzheimer's Disease: The Long and Winding Road
    Manzine, Patricia R.
    Vatanabe, Izabela P.
    Peron, Rafaela
    Grigoli, Marina M.
    Pedroso, Renata, V
    Nascimento, Carla M. C.
    Cominetti, Marcia R.
    CURRENT PHARMACEUTICAL DESIGN, 2020, 26 (12) : 1300 - 1315
  • [37] Blood-based biomarkers of Alzheimer's disease and incident dementia in the community
    Grande, Giulia
    Valletta, Martina
    Rizzuto, Debora
    Xia, Xin
    Qiu, Chengxuan
    Orsini, Nicola
    Dale, Matilda
    Andersson, Sarah
    Fredolini, Claudia
    Winblad, Bengt
    Laukka, Erika J.
    Fratiglioni, Laura
    Vetrano, Davide L.
    NATURE MEDICINE, 2025,
  • [38] Development of Alzheimer's Disease Biomarkers: From CSF- to Blood-Based Biomarkers
    Mankhong, Sakulrat
    Kim, Sujin
    Lee, Seongju
    Kwak, Hyo-Bum
    Park, Dong-Ho
    Joa, Kyung-Lim
    Kang, Ju-Hee
    BIOMEDICINES, 2022, 10 (04)
  • [39] Blood-Based Protein Biomarkers for Diagnosis of Alzheimer Disease
    Doecke, James D.
    Laws, Simon M.
    Faux, Noel G.
    Wilson, William
    Burnham, Samantha C.
    Lam, Chiou-Peng
    Mondal, Alinda
    Bedo, Justin
    Bush, Ashley I.
    Brown, Belinda
    De Ruyck, Karl
    Ellis, Kathryn A.
    Fowler, Christopher
    Gupta, Veer B.
    Head, Richard
    Macaulay, S. Lance
    Pertile, Kelly
    Rowe, Christopher C.
    Rembach, Alan
    Rodrigues, Mark
    Rumble, Rebecca
    Szoeke, Cassandra
    Taddei, Kevin
    Taddei, Tania
    Trounson, Brett
    Ames, David
    Masters, Colin L.
    Martins, Ralph N.
    ARCHIVES OF NEUROLOGY, 2012, 69 (10) : 1318 - 1325
  • [40] Association of periodontitis with cognitive decline and its progression: Contribution of blood-based biomarkers of Alzheimer's disease to this relationship
    Carballo, Alvaro
    Lopez-Dequidt, Iria
    Custodia, Antia
    Botelho, Joao
    Aramburu-Nunez, Marta
    Machado, Vanessa
    Pias-Peleteiro, Juan Manuel
    Ouro, Alberto
    Romaus-Sanjurjo, Daniel
    Vazquez-Vazquez, Laura
    Jimenez-Martin, Isabel
    Aguiar, Pablo
    Rodriguez-Yanez, Manuel
    Aldrey, Jose Manuel
    Blanco, Juan
    Castillo, Jose
    Sobrino, Tomas
    Leira, Yago
    JOURNAL OF CLINICAL PERIODONTOLOGY, 2023, 50 (11) : 1444 - 1454