On K2 of Certain Families of Curves

被引:6
|
作者
Liu, Hang [1 ]
de Jeu, Rob [2 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Vrije Univ Amsterdam, Fac Exacte Wetenschappen, Afdeling Wiskunde, NL-1081 HV Amsterdam, Netherlands
基金
中国国家自然科学基金;
关键词
CONJECTURE;
D O I
10.1093/imrn/rnu261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct families of smooth, proper, algebraic curves in characteristic 0, of arbitrary genus g, together with g elements in the kernel of the tame symbol. We show that those elements are in general independent by a limit calculation of the regulator. Working over a number field, we show that in some of those families the elements are integral. We determine when those curves are hyperelliptic, finding, in particular, that over any number field we have nonhyperelliptic curves of all composite genera g with g independent integral elements in the kernel of the tame symbol. We also give families of elliptic curves over real quadratic fields with two independent integral elements.
引用
收藏
页码:10929 / 10958
页数:30
相关论文
共 50 条
  • [21] Retrieval of the Fluid Love Number k2 in Exoplanetary Transit Curves
    Hellard, Hugo
    Csizmadia, Szilard
    Padovan, Sebastiano
    Rauer, Heike
    Cabrera, Juan
    Sohl, Frank
    Spohn, Tilman
    Breuer, Doris
    ASTROPHYSICAL JOURNAL, 2019, 878 (02):
  • [22] Surjectivity of p-adic regulators on K2 of Tate curves
    Masanori Asakura
    Inventiones mathematicae, 2008, 172 : 213 - 229
  • [23] K2 OF ELLIPTIC-CURVES WITH SUFFICIENT TORSION OVER Q
    ROSS, R
    COMPOSITIO MATHEMATICA, 1992, 81 (02) : 211 - 221
  • [24] Surjectivity of p-adic regulators on K2 of Tate curves
    Asakura, Masanori
    INVENTIONES MATHEMATICAE, 2006, 165 (02) : 267 - 324
  • [25] On the Ramsey numbers r(K2,n-1, K2,n) and r(K2,n, K2,n)
    Lortz, R
    Mengersen, I
    UTILITAS MATHEMATICA, 2002, 61 : 87 - 95
  • [26] Numerical verification of Beilinson's conjecture for K2 of hyperelliptic curves
    Dokchitser, T
    de Jeu, R
    Zagier, D
    COMPOSITIO MATHEMATICA, 2006, 142 (02) : 339 - 373
  • [27] Surjectivity of p-adic regulators on K2 of Tate curves
    Masanori Asakura
    Inventiones mathematicae, 2006, 165 : 267 - 324
  • [29] On certain families of elliptic curves in projective space
    Dolgachev I.V.
    Annali di Matematica Pura ed Applicata (1923 -), 2004, 183 (3): : 317 - 331
  • [30] Torsion points on certain families of elliptic curves
    Wieczorek, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (01): : 157 - 160