Interference effects in silicon-germanium heterostructures with quantum wells of different widths

被引:0
|
作者
Berkutov, I. B. [1 ,2 ,3 ]
Andrievskii, V. V. [1 ,2 ]
Komnik, Yu. F. [1 ]
Kolesnichenko, Yu. A. [1 ]
Berkutova, A. I. [4 ,5 ]
Leadley, D. R. [6 ]
Mironov, O. A. [2 ,6 ]
机构
[1] Natl Acad Sci Ukraine, BI Verkin Inst Low Temp Phys & Engn, Pr Nauki 47, UA-61103 Kharkov, Ukraine
[2] Int Lab High Magnet Fields & Low Temp, PL-50985 Wroclaw, Poland
[3] Univ Manchester, Oxford Rd, Manchester M13 9PL, Lancs, England
[4] Pavol Jozef Safarik Univ Kosice, Srobarova 2, Kosice 04180, Slovakia
[5] Kharkov Natl Univ, Pl Svobody 4, UA-61022 Kharkov, Ukraine
[6] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
关键词
CONDUCTIVITY;
D O I
10.1063/1.4941963
中图分类号
O59 [应用物理学];
学科分类号
摘要
Weak localization effects and the interactions of charge carriers are studied in two Si0.7Ge0.3/Si0.2Ge0.8/Si0.7Ge0.3 p-type heterostructures, where one or two quantum levels are filled, respectively. A weak localization effect for two-dimensional charge carriers is found to occur in weak magnetic fields when the spin-orbital and inelastic scattering times are close, which is indicative of splitting of the spin states under the influence of a perturbing potential related to the formation of a two-dimensional potential well (Rashba mechanism). In higher magnetic fields when one quantum level is occupied, interaction effects appear that are caused by Coulomb interactions with a scatterer. When the two quantum levels are occupied, the dominant mechanism is scattering on Friedel oscillations of the charge carrier density induced by an impurity electric field. In all regions, the quantum corrections are in good agreement with modern theoretical predictions. (C) 2016 AIP Publishing LLC.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [21] SILICON-GERMANIUM HETEROSTRUCTURES - ADVANCED MATERIALS AND DEVICES FOR SILICON TECHNOLOGY - REVIEW
    WHALL, TE
    PARKER, EHC
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 1995, 6 (05) : 249 - 264
  • [22] Silicon-germanium nanostructures with germanium quantum dots for optoelectronic applications
    Mudryi, A., V
    Mofidnahai, F.
    Karotki, A., V
    Dvurechensky, A., V
    Smagina, Zh., V
    Volodin, V. A.
    Novikov, P. L.
    DEVICES AND METHODS OF MEASUREMENTS, 2012, (01): : 44 - 50
  • [23] Quantum confinement in silicon-germanium electron waveguides
    Curatola, G
    Iannaccone, G
    NANOTECHNOLOGY, 2002, 13 (03) : 267 - 273
  • [24] Silicon-germanium quantum-cascade lasers
    Kelsall, Robert W.
    Soref, Richard A.
    International Journal of High Speed Electronics and Systems, 2003, 13 (02) : 547 - 573
  • [25] SILICON-GERMANIUM ALLOYS AND HETEROSTRUCTURES - OPTICAL AND ELECTRONIC-PROPERTIES
    PEARSALL, TP
    CRC CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 1989, 15 (06): : 551 - &
  • [26] Simulation of phonon interfacial transport in strained silicon-germanium heterostructures
    Zhang, Wei
    Fisher, Timothy S.
    PROCEEDINGS OF THE ASME HEAT TRANSFER DIVISION 2005, VOL 1, 2005, 376-1 : 683 - 689
  • [27] Simulation of effects of emitter and collector widths on performance of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs)
    Khadir, A.
    Sengouga, N.
    Kouzou, A.
    Abdelhafidi, M. K.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2018, 17 (02) : 682 - 688
  • [28] Terahertz emission from silicon-germanium quantum cascades
    Kelsall, RW
    Ikonic, Z
    Harrison, P
    Lynch, SA
    Bates, R
    Paul, DJ
    Norris, DJ
    Liew, SL
    Cullis, AG
    Robbins, DJ
    Murzyn, P
    Pidgeon, CR
    Arnone, DD
    Soref, RA
    TOWARDS THE FIRST SILICON LASER, 2003, 93 : 367 - 382
  • [29] Spin-dependent transport in silicon/silicon-germanium quantum dots
    Eriksson, Mark A.
    2008 IEEE SILICON NANOELECTRONICS WORKSHOP, 2008, : 29 - 29
  • [30] Thermal and thermoelectric behavior of silicon-germanium quantum well structures
    M. N. Tripathi
    C. M. Bhandari
    The European Physical Journal B, 2007, 59 : 503 - 508