We describe a construction of Stein kernels using moment maps, which are solutions to a variant of the Monge-Ampere equation. As a consequence, we show how regularity bounds in certain weighted Sobolev spaces on these maps control the rate of convergence in the classical central limit theorem, and derive new rates in Kantorovitch-Wasserstein distance in the log-concave situation, with explicit polynomial dependence on the dimension.
机构:
Inst Nacl Matemat Pura & Aplicada, Estrada Dona Castorina 110, BR-22460320 Rio De Janeiro, BrazilInst Nacl Matemat Pura & Aplicada, Estrada Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
Bursztyn, Henrique
Iglesias Ponte, David
论文数: 0引用数: 0
h-index: 0
机构:
CSIC, Inst Ciencias Matemat, E-28006 Madrid, SpainInst Nacl Matemat Pura & Aplicada, Estrada Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
Iglesias Ponte, David
Severa, Pavol
论文数: 0引用数: 0
h-index: 0
机构:
Univ Geneva, Sect Math, CH-1211 Geneva 4, SwitzerlandInst Nacl Matemat Pura & Aplicada, Estrada Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil