Partially linear models with p-order autoregressive skew-normal errors

被引:3
|
作者
Ferreira, Clecio da Silva [1 ]
Montoril, Michel H. [2 ]
Paula, Gilberto A. [3 ]
机构
[1] Univ Fed Juiz de Fora, Dept Stat, Juiz De Fora, MG, Brazil
[2] Univ Fed Sao Carlos, Dept Stat, Sao Carlos, SP, Brazil
[3] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Autoregressive models; EM-algorithm; penalized smoothing; semiparametric models; skew-normal distribution; PENALIZED LIKELIHOOD; REGRESSION MODELS; DISTRIBUTIONS;
D O I
10.1214/22-BJPS556
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes partially linear models with random errors following p-order autoregressive (AR) with skew-normal errors. The maxi-mum likelihood estimators are derived from the Expectation-Maximization algorithm, which have analytic expressions for the M and E-steps. The es-timation of the effective degrees of freedom concerning the nonparametric component are obtained based on a linear smoother. The conditional quan-tile residuals are used for the construction of simulated confidence bands to assess departures from the error assumptions, as well as autocorrelation and partial autocorrelation graphs are considered to check adequacy of the AR error structure. A simulation study is carried out to evaluate the efficiency of the EM algorithm. Finally, the methodology is illustrated by a real data set on cardiovascular mortality.
引用
收藏
页码:792 / 806
页数:15
相关论文
共 50 条
  • [41] Simulation of Balakrishnan skew-normal order statistics
    Teimouri, Mahdi
    Nadarajah, Saralees
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (11) : 3310 - 3322
  • [42] Skew-normal linear calibration: a Bayesian perspective
    Figueiredo, Cleber da Costa
    Sandoval, Monica Carneiro
    Bolfarine, Heleno
    Lima, Claudia Regina O. P.
    JOURNAL OF CHEMOMETRICS, 2008, 22 (7-8) : 472 - 480
  • [43] Generalized skew-normal models:: properties and inference
    Gomez, Hector W.
    Salinas, Hugo S.
    Bolfarine, Heleno
    STATISTICS, 2006, 40 (06) : 495 - 505
  • [44] A mixture of logistic skew-normal multinomial models
    Tu, Wangshu
    Browne, Ryan
    Subedi, Sanjeena
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 196
  • [45] Detecting changes in linear regression models with skew normal errors
    Said, Khamis K.
    Ning, Wei
    Tian, Yubin
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2018, 26 (01) : 1 - 10
  • [46] Heteroscedastic partially linear model under skew-normal distribution with application in ragweed pollen concentration
    Ferreira, Clecio S.
    Zeller, Camila Borelli
    de Oliveira Garcia, Rafael R.
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (06) : 1255 - 1282
  • [47] A suite of commands for fitting the skew-normal and skew-t models
    Marchenko, Yulia V.
    Genton, Marc G.
    STATA JOURNAL, 2010, 10 (04): : 507 - 539
  • [48] Bayesian analysis of censored linear regression models with scale mixtures of skew-normal distributions
    Massuia, Monique B.
    Garay, Aldo M.
    Cabral, Celso R. B.
    Lachos, V. H.
    STATISTICS AND ITS INTERFACE, 2017, 10 (03) : 425 - 439
  • [49] A skew-normal dynamic linear model and Bayesian forecasting
    Arellano-Valle, Reinaldo B.
    Contreras-Reyes, Javier E.
    Lopez Quintero, Freddy O.
    Valdebenito, Abel
    COMPUTATIONAL STATISTICS, 2019, 34 (03) : 1055 - 1085
  • [50] A skew-normal dynamic linear model and Bayesian forecasting
    Reinaldo B. Arellano-Valle
    Javier E. Contreras-Reyes
    Freddy O. López Quintero
    Abel Valdebenito
    Computational Statistics, 2019, 34 : 1055 - 1085