Elevation-dependent warming in the Swiss Alps 1981-2017: Features, forcings and feedbacks

被引:39
|
作者
Rottler, Erwin [1 ]
Kormann, Christoph [2 ]
Francke, Till [1 ]
Bronstert, Axel [1 ]
机构
[1] Univ Potsdam, Inst Earth & Environm Sci, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[2] Reg Council, Dept Occupat Safety & Environm, Frankfurt, Germany
关键词
cloud cover; elevation dependency; mountain climate; snow; ice-albedo feedback; Swiss Alps; temperature trend; weather types; CLIMATE-CHANGE; TEMPERATURE; SWITZERLAND; TRENDS; WEATHER; FREQUENCY; RADIATION; EUROPE; SERIES; FLOODS;
D O I
10.1002/joc.5970
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Due to the environmental and socio-economic importance of mountainous regions, it is crucial to understand causes and consequences of climatic changes in those sensitive landscapes. Daily resolution alpine climate data from Switzerland covering an elevation range of over 3,000m between 1981 and 2017 have been analysed using highly resolved trends in order to gain a better understanding of features, forcings and feedbacks related to temperature changes in mountainous regions. Particular focus is put on processes related to changes in weather types, incoming solar radiation, cloud cover, air humidity, snow/ice and elevation dependency of temperature trends. Temperature trends in Switzerland differ depending on the time of the year, day and elevation. Warming is strongest during spring and early summer with enhanced warming of daytime maximum temperatures. Elevation-based differences in temperature trends occur during autumn and winter with stronger warming at lower elevations. We attribute this elevation-dependent temperature signal mainly to elevation-based differences in trends of incoming solar radiation and elevation-sensitive responses to changes in frequencies of weather types. In general, effects of varying frequencies of weather types overlap with trends caused by transmission changes in short- and long-wave radiation. Temperature signals arising from snow/ice albedo feedback mechanisms are probably small and might be hidden by other effects.
引用
收藏
页码:2556 / 2568
页数:13
相关论文
共 50 条
  • [41] Assessment and projection of elevation-dependent warming over the Tibetan Plateau by CMIP6 models
    Zhu, Lihua
    Fan, Guangzhou
    THEORETICAL AND APPLIED CLIMATOLOGY, 2022, 147 (3-4) : 1713 - 1723
  • [42] Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau
    Guo, Donglin
    Pepin, Nick
    Yang, Kun
    Sun, Jianqi
    Li, Duo
    SCIENCE BULLETIN, 2021, 66 (11) : 1146 - 1150
  • [43] Does elevation-dependent warming hold true above 5000m elevation? Lessons from the Tibetan Plateau
    Gao, Yanhong
    Chen, Fei
    Lettenmaier, Dennis P.
    Xu, Jianwei
    Xiao, Linhong
    Li, Xia
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2018, 1
  • [44] Assessment and projection of elevation-dependent warming over the Tibetan Plateau by CMIP6 models
    Lihua Zhu
    Guangzhou Fan
    Theoretical and Applied Climatology, 2022, 147 : 1713 - 1723
  • [45] Revisiting Recent Elevation-Dependent Warming on the Tibetan Plateau Using Satellite-Based Data Sets
    Guo, Donglin
    Sun, Jianqi
    Yang, Kun
    Pepin, Nick
    Xu, Yongming
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (15) : 8511 - 8521
  • [46] The Character and Causes of Elevation-Dependent Warming in High-Resolution Simulations of Rocky Mountain Climate Change
    Minder, Justin R.
    Letcher, Theodore W.
    Liu, Changhai
    JOURNAL OF CLIMATE, 2018, 31 (06) : 2093 - 2113
  • [47] Elevation-dependent changes in the trend of reference evapotranspiration in the Tibetan Plateau during 1960-2017
    Chang, Yaping
    Ding, Yongjian
    Zhao, Qiudong
    Qin, Jia
    Zhang, Shiqiang
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2023, 43 (05) : 2077 - 2095
  • [48] Elevation-Dependent Trends in Precipitation Observed over and around the Tibetan Plateau from 1971 to 2017
    Hu, Wenfeng
    Yao, Junqiang
    He, Qing
    Chen, Jing
    WATER, 2021, 13 (20)
  • [49] Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model simulations
    Palazzi, Elisa
    Filippi, Luca
    von Hardenberg, Jost
    CLIMATE DYNAMICS, 2017, 48 (11) : 3991 - 4008
  • [50] Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model simulations
    Elisa Palazzi
    Luca Filippi
    Jost von Hardenberg
    Climate Dynamics, 2017, 48 : 3991 - 4008