Augmented inverse probability weighting (AIPW);
Double robustness;
Empirical likelihood;
Extreme weights;
Missing at random (MAR);
Propensity score;
CAUSAL INFERENCE MODELS;
EMPIRICAL-LIKELIHOOD;
INCOMPLETE DATA;
IMPUTATION;
EFFICIENCY;
D O I:
10.1016/j.jspi.2013.12.006
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In estimating the population mean of a response variable that is missing at random, the estimator proposed by Han and Wang (2013) possesses the multiple robustness property, in the sense that it is consistent if any one of the multiple models for both the missingness probability and the conditional expectation of the response variable given the covariates is correctly specified. This estimator is a significant improvement over the existing doubly robust estimators in the literature. However, the calculation of this estimator is difficult, as it requires solving equations that may have multiple roots, and only when the appropriate root is used is the final estimator multiply robust. In this paper, we propose a new way to define and calculate this estimator. The appropriate root is singled out through a convex minimization, which guarantees the uniqueness. The new estimator possesses other desirable properties in addition to multiple robustness. In particular, it always falls into the parameter space, and is insensitive to extreme values of the estimated missingness probability. (C) 2013 Elsevier B.V. All rights reserved.
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Buenos Aires, DF, Argentina
Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Buenos Aires, DF, Argentina
Boente, Graciela
Gonzalez-Manteiga, Wenceslao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Santiago, SpainUniv Buenos Aires, Fac Ciencias Exactas & Nat, Buenos Aires, DF, Argentina
Gonzalez-Manteiga, Wenceslao
Perez-Gonzalez, Ana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vigo, Vigo, SpainUniv Buenos Aires, Fac Ciencias Exactas & Nat, Buenos Aires, DF, Argentina
机构:
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
Minnan Normal Univ, Sch Phys & Engn, Zhangzhou, Fujian, Peoples R China
Minnan Normal Univ, Sch Phys & Engn, Zhangzhou 363000, Fujian, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
Chen, Yingpin
Huang, Yuming
论文数: 0引用数: 0
h-index: 0
机构:
Minnan Normal Univ, Sch Phys & Engn, Zhangzhou, Fujian, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
Huang, Yuming
Song, Jianhua
论文数: 0引用数: 0
h-index: 0
机构:
Minnan Normal Univ, Sch Phys & Engn, Zhangzhou, Fujian, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
机构:
SOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, JapanSOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, Japan
Tomita, Hiroaki
Fujisawa, Hironori
论文数: 0引用数: 0
h-index: 0
机构:
SOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, Japan
Inst Stat Math, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
Nagoya Univ, Grad Sch Med, Dept Math Stat, Nagoya, Aichi, JapanSOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, Japan
Fujisawa, Hironori
Henmi, Masayuki
论文数: 0引用数: 0
h-index: 0
机构:
SOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, Japan
Inst Stat Math, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, JapanSOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, Japan
机构:
NICHHD, Biometry & Math Stat Branch, Div Epidemiol Stat & Prevent Res, NIH,DHHS, Rockville, MD 20852 USA
Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R ChinaNICHHD, Biometry & Math Stat Branch, Div Epidemiol Stat & Prevent Res, NIH,DHHS, Rockville, MD 20852 USA
Wu, Mi-Xia
Yu, Kai-Fun
论文数: 0引用数: 0
h-index: 0
机构:
NICHHD, Biometry & Math Stat Branch, Div Epidemiol Stat & Prevent Res, NIH,DHHS, Rockville, MD 20852 USANICHHD, Biometry & Math Stat Branch, Div Epidemiol Stat & Prevent Res, NIH,DHHS, Rockville, MD 20852 USA