We study the behavior of the ergodic singular integral T associated to a nonsingular measurable pow {tau(t) : t is an element of R} on a finite measure space and a Calderon-Zygmund kernel with support in (0, infinity). We show that if the flow preserves the measure or with more generality, if the flow is such that the semipow {tau(t) : t greater than or equal to 0} is Cesaro-bounded, f and Tf are integrable functions, then the truncations of the singular integral converge to Tf nor only in the a.e. sense but also in the L-1-norm. To obtain this result we study the problem for the singular integrals in the real line and in the setting of the weighted L-1-spaces.
机构:
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China
Zhou, Yongtao
Stynes, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China
机构:
Univ Artois, EA 2462, Lab Math Lens, F-62300 Lens, France
Federat CNRS Nord Pas de Calais FR 2956, F-59655 Villeneuve Dascq, FranceUniv Artois, EA 2462, Lab Math Lens, F-62300 Lens, France